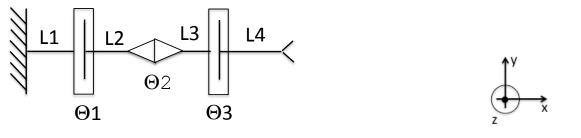
QUESTION 1

Manipulator

(2+3+3+3 = 11 points)

Consider the following robot manipulator:



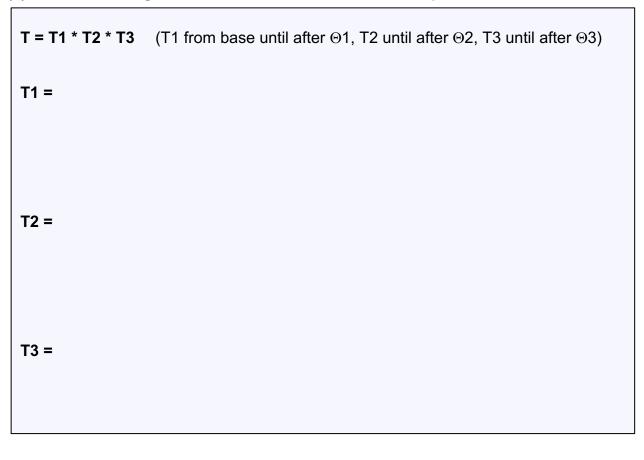
(a) Graphically sketch the work area (reachable area) of this manipulator. How would you best verbally describe this shape?

Graphical sketch:		
	•	
Verbal description:		

(b) Describe the Transformation from Base to Tool-Tip using $Rot_{axis}(\alpha)$ and Trans(x,y,z).

Т=

(c) Derive 3 Homogeneous Transformation for this manipulator as 4x4 matrices.



(d) For the special case that Θ 1=90° and Θ 3=–90°, simplify to a single 4x4 transformation. What is the 3D-position of the tool-tip in this case for Θ 2=90°?

T_{90,90} =

QUESTION 2

Inverse Kinematics

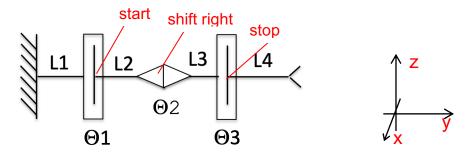
(10 points)

Simply the robot manipulator from before by fixing θ 1 = 0, L1=0, L2=0, L3=1, L4=1

(a) Graphically sketch the work area (reachable area) of this manipulator. How would you best verbally describe this shape?

(b) Derive and $\theta 2$ and $\theta 3$ from given x, y, z coordinates of the end-effector.

QUESTION 3 *Denavir-Hartenberg* Consider the following robot manipulator:



(a) Complete the DH table for this given manipulator (ignore L1, L4). Remember that joints Θ i should be along the z-axis, and links Li along the x or z-axis.

	Rotx	Trans _x	Transz	Rotz
i	αi-1	a _{i-1}	di	θι
1				
2				
3				

(b) Write the manipulator forward kinematics as a sequence of DH Trans and Rot transformations.

T=____

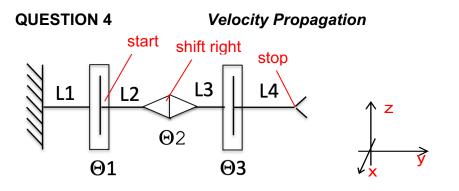
(c) Write ${}^{0}_{1}T$, ${}^{1}_{2}T$ and ${}^{2}_{3}T$ (ignoring L4) as DH 4x4 matrices.

$${}^{i-1}_{i}T = \begin{bmatrix} \cos\theta_{i} & -\sin\theta_{i} & 0 & a_{i-1} \\ \sin\theta_{i} \cdot \cos\alpha_{i-1} & \cos\theta_{i} \cdot \cos\alpha_{i-1} & -\sin\alpha_{i-1} & -\sin\alpha_{i-1} \cdot d_{i} \\ \sin\theta_{i} \cdot \sin\alpha_{i-1} & \cos\theta_{i} \cdot \sin\alpha_{i-1} & \cos\alpha_{i-1} & \cos\alpha_{i-1} \cdot d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

⁰₁T =

¹₂T =

²₃T =



For the manipulator shown above:

- Set L1=0
- Use the DH-Notation

(a) Calculate all velocities

 $^{1}\omega_{1}, ^{1}V_{1}$

²ω₂, ²V₂

 $^{3}\omega_{3}, ^{3}V_{3}$

⁴ω₄, ⁴ν₄

and write down the formula only for how to calculate ${}^{0}v_{4}$

(b) Build the Jacobian ${}^{3}J(\theta_{1}, \theta_{2}, \theta_{3})$

QUESTION 5 Reliability

(10 points)

Reliability of combinatorial systems

- Assume a system of *n* identical components *x* that all have the same reliability *r*.
- SER(..) denotes subassemblies in series (no redundancy)
- PAR(..) denotes subassemblies in parallel (full redundancy)

Note:

- $R(t) = e^{-\lambda t}$
- MTTF = $1/\lambda$
- MTTF = $\int_0^\infty R(t) dt$

(a) Compute the reliability in terms of *r* for the component system: SER(PAR(x, x, x, x), PAR(x, x))

(b) For a constant failure rate λ

Assume each component x has the failure rate $\lambda = 0.02$ failures per day.

- Calculate MTTF for a single component x.
- Calculate R_x(t) at t = 0
- Calculate R_X(t) at t = MTTF
- Plot the graph $R_X(t)$ in range [0, 100] days

(c) Calculate MTTF for these configurations

- Calculate MTTF for SER(x,x).
- Calculate MTTF for PAR(x,x).