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1. Introduction

”A simulation is an imitation of some real thing, state of affairs, or process.
The act of simulating something generally entails representing certain key

characteristics or behaviors of a selected physical or abstract system.”[SIM 05]

1.1 Motivation
The CIIPS1 group at the University of Western Australia in Perth is active in de-
veloping submarine robots, so called ”Autonomous Underwater Vehicles”, or AUV.
Those models are controlled by an embedded microcontroller running an individual
user program. Developing, debuging and testing those controller programs on phys-
ical submarine models is quite time consuming and circuitous. A simulation system
avoids the need for a physical model and an underwater environment. This results
not only in time savings but also decreasing development costs.

1.2 Project Aim
The aim of this software engineering project is to design and develop a simulation
program. It is meant as a debug and testing system for researchers, developing
programs for submarine robot controller.

The focus is especially set on a system with a dynamic physical simulation which ex-
ecutes a controller program, simulates and visualizes sensor data, actuator behavior
and camera pictures.

The basic program structure with its several program parts and the interfaces in
between them is to be defined. There are parts for the physical simulation of the
AUV model, three dimensional representation of the environment or the graphical
user interface. For the physical simulation, the CIIPS group provides the library
PAL, which has to be included.

To execute and simulate the controller program the thesis introduces a basic, uni-
versal interface which links a controller program with the simulation system. As the

1CIIPS: Centre for Intelligent Information Processing Systems - http://ciips.ee.uwa.edu.au

http://ciips.ee.uwa.edu.au
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CIIPS group uses the EyeBot controller for the submarine models, a special interface
for this controller is to be designed and implemented as well.

To extend the system in the future, the focus is additionally set on a structure
allowing to include plugins easily.

1.3 Project Structure

Chapter 2 describes the initial situation with an overview of the submarine projects
at the CIIPS group. A discussion of other simulation systems follows which leads to
the program requirements for the new system at the end

Chapter 3 introduces the software concept and discusses first program components
necessary for the realization and implementation of the system.

Chapter 4 describes the program components in more detail. The system is split
in a server part with a layer model and client part. The server is presented with
a focus on the data layer which keeps the data structure and physical simulation
part. The different types of clients connecting to the server are explained with the
introduction of the Eyebot Plugin as an example plugin and implementation of the
EyeBot controller interface.

An example simulation case is given in chapter 5. It is meant to demonstrate the
program usage and its features.

Chapter 6 finishes the thesis with a final summary and gives outlook to future
developments and improvements.

The appendix features an overview of the interfaces (A), example settings files (B),
class hierarchy (C), a short manual (D) and GUI shortcuts (E).



2. Initial Situation

2.1 Autonomous Underwater Vehicles
An AUV model typically consists of an embedded controller with a set of hardware
components like actuators, sensors and a camera. Typical actuators are electronic
motors or servos, example sensors are PSD (Positional Sensitive Device) for distance
measuring or contact sensors. All the devices are connected to the controller running
a special program to control the system.

There are two different AUV developments running:

The first AUV developed at the CIIPS group is named MAKO. The aim of this
project is to gain basic knowledge about developing AUVs. Besides constructing
the model and embedding the EyeBot controller, the focus is also set on sensor
development. The AUV is slightly buoyant and has an automatic righting effect
because of its low center of mass.

Figure 2.1: Autonomous Underwater Vehicle MAKO

An EyeBot controller, connected to four propeller motors, a velocimeter and four
echo sounders controls the submarine. The motors act independent of each other,
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two for moving and two for active diving. An onboard color camera is used for
obstacle recognition to follow and detect objects, for example. Bluetooth, WLAN
and an infrared remote control are used for communicating to a host station once
the AUV has surfaced.

The second project is about a submarine model called USAL. Compared to the AUV
MAKO, it is much smaller and more compact, therefore handier to transport. It is
constructed to provide a basement for future research and to participate in AUV
competitions.

Figure 2.2: Autonomous Underwater Vehicle USAL

The AUV is equipped with two thrusters, one for movement forward/backward (x-
direction) and one for movement in up/down (z-direction). A rudder blade in the
back provides yaw movement when the AUV is going in x-direction. For provid-
ing yaw movement in small operation areas, an independent small bow rudder is
additionally attached. The model is controlled by an EyeBot controller with an
interface to a color camera. A huge sensor suite for mission and navigation tasks
is integrated: distance measurement to the front, the sides and bottom direction,
a compass, a 3-axis accelerometer and a depth sensor. To prevent the AUV from
damage in the case of leakage, an inside water sensor is integrated. Communication
is provided via Bluetooth for up- and downloading data and basic instructions can
be send by a infrared remote control.

2.2 Other Simulation Systems

As one can imagine, developing (EyeBot) controller programs and testing them on
physical AUVs is quite time consuming and circuitous. The special underwater
environment leads to a completely new situation compared to known environments
like those for robots running on floors. First, it is obvious that a water pool is needed
which is uncommon in usual research places. Second, special precautions have to
be taken for an underwater recovery of the model in case of a program or hardware
failure. Still, the risk to gain hardware damage by water is quite high which results
in increasing development costs.
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The AUV models are kept compact, hence the amount of included batteries is re-
stricted. External power supply with cables is through the risk of a circuit shortcut
caused by water hardly possible. This leads to a certain amount of time testing
an EyeBot program on the AUV before having to recharge or change the batteries.
For testing purposes, onboard data tracking is a common technique, but as of the
limited space in the AUV model and therefore missing storage devices this is hardly
possible.

Common AUV applications like avoiding or following obstacles need special under-
water environment with different kind of objects. Those objects must be controlled
in a real water pool, which can be quite complicated, considering changing position
or performing special movements.

Additionally, a simulation system plays an important role, since it allows to develop
and test the controller program right from the beginning. Is the physical robot model
finished, the program can be transferred to the controller without modifications. The
real-time simulation system can help closing the gap between off-line simulation and
real testing using the already implemented robot model. When properly interfaced
with the robot hardware, a real-time graphical simulation with a ”hardware in the
loop” (HIL) configuration, allows running the implemented controller program on
the actual robot model. This reduces the development time drastically.

The following introduces two simulation systems motivated by this scenario. The
first one is Neptune developed for research purposes, the second is DeepWorks, which
is targeted to industry field and commercial applications.

Figure 2.3: Neptune screenshot showing the graphical represenation of simulation
and sensor data.

The system Neptune is a real-time 3D graphical simulator for running online, hard-
ware in the loop and hybrid simulations. It is developed by the Computer Vision
and Robotics Group at the University of Girona in Spain1 and first introduced in
2002.

1VicoRob - http://vicorob.udg.es

http://vicorob.udg.es
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The system is very flexible in the sense that new virtual worlds and new AUV models
can be added in a very easy way. As a multi-vehicle Simulator more than one robot
can be simultaneously simulated. Each robot is defined through three basic files
with geometry, hydrodynamics and sensors definition. Simulated sensors for range
detection, sonar, vision and internal sensors (position, attitude, speed and depth) are
supported. The environment is modeled using VRML combined with a bathymetry
model. The graphical simulator is based on OpenGL. A screenshot of the program
is shown in figure 2.3.

In order to allow a real time performance, the application has been build as a dis-
tributed application including several processes: the Neptune main program, one
robot dynamics process for each simulated robot and a name server. All the pro-
grams interact among them through a TCP/IP network.

Ocean currents and waves are no yet supported, but it is planned to introduce them
in next versions. A more detailed description can be found in [Ridao 04].

Another interesting simulation system is DeepWorks - a high-end world class subsea
simulation. It is a suite of simulation solutions developed by GLR2 situated in
England. Founded in 1988, GRL is the one of world leader at developing simulation
solutions for the subsea environment.

DeepWork has a unique software architecture for the 3D simulation, visualisation
and control of underwater systems. The System is developed for the Offshore indus-
try who rightly demands the highest levels of quality and reliability. The simulation
system consits of core libraries which provide:

• User-configurable 3D graphical models

• Contact dynamics to detect collisions and respond correctly.

• Manipulator and vehicle control

• Vehicle/vessel dynamics and hydrodynamics (ROV?s, submarines)

• Environmental factors (lighting, clouding, turbidity)

• Cable dynamics and hydrodynamics

• Graphics engine with network support

• Currents and tides (3D and time varying)

• Sonar simulation based on line tracing

• Real time interfacing to position sensing data (NMEA for example)

The libraries are available for customers to incorporate into their own products.

2GLR - http://www.generalrobotics.co.uk

http://www.generalrobotics.co.uk
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Figure 2.4: DeepWorks screenshot showing a running simulation and the control
panels.

2.3 Requirements
The examples show, that powerful underwater simulation systems are already avail-
able. Plenty of different applications can be simulated. But nevertheless the sim-
ulated robot models and embedded controllers have to be tailored and configured
to fulfill certain requirements. A gerneral, universal implementation is yet not sup-
ported. A customization to the EyeBot controller used by CIIPS group is not pos-
sible.

This leads to the decision to design and implement a new simulation system with
and universal interface for generic controller systems and an interface implementation
for the EyeBot controller. The program is named ”SubSim”, a merge of the words
”Submarine” and ”Simulator”, clearly hinting this project’s aim.

Based on these facts, the following requirements are made:

• The underwater environment with its special physical circumstances is be sim-
ulated together with all the different sensor inputs including the cameras of an
AUV.

• For special scenarios, other additional passive objects like a floating buoy, ship
or pipes should be placeable in the environment to interfere with the AUV.

• Any EyeBot program written for an AUV should be allowed to execute and to
be simulate without restrictions or changing the source code.

• As a simulation without being able to monitor its progress is quite useless, the
system should enable the user to watch the environment in different views and
observe all the sensor data from a chosen AUV while simulating.

• The movements of the objects are to be visualized as well the controller output
to its LCD display.
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• The user must have the opportunity to interact by changing simulation speed
or object position.

• To extend the simulator for future applications a plugin system should be
implemented which offers access to the functions and data of the simulator
program through a special interface.

• As it is common practice, any settings file for the application or describing
the objects should be structured in XML (Extensible Markup Language) to
provide an intuitive and easy editing.

• Endusers should get support through a help system

• Developer documentation for creating plugins and continuing the work on the
simulation program development should be provided.

This thesis comes out with a discussion of a simulation system fulfilling these re-
quirements. It shows how the requirements are implemented and realized.



3. Concept of the Simulation
System

A usual simulation system consists of several parts interacting with each other. As
shown in figure 3.1 the simulation core is in the center of the system. It executes a
controller program and process the physical calculations according to the information
supplied by the data part. The data part contains the graphical and physical model
of the world, robots and other objects. To be highly customizable, the simulation
and model descriptions are provided through user-editable setting files.

Figure 3.1: Concept of the Simualtion System

The simulation results, as output, are presented in the visualization part. In here,
simulation and sensor data is displayed and a three-dimensional model of the envi-
ronment is rendered. The control part allows the user to input and interact with
the simulation. The user is able to control the simulation in changing the execu-
tion speed or adjusting parameters. The users viewpoint in the rendered scene and
visualization mode of the objects can be changed as well.
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3.1 Definitions
In this document the underwater environment will be referred as World. The three-
dimensional objects acting in the environment are called WorldObjects. There are
active and passive objects. Passive examples are buoys, pipelines or any other ob-
ject the submarine may interact with. An active object is an AUV (e.g. submarine)
and called WorldActiveObject. Compared to a passive object it additionally con-
tains a proper description of its sensors, actuators and cameras together with an
(EyeBot) controller program file called Client in the following. To detect and use
the hardware components, the EyeBot controller uses a mechanism called the Hard-
ware Description Table, or HDT, for defining low-level attributes for sensors and
actuators. Typical actuators are electronic motors or servos, example sensors are
PSDs (Positional Sensitive Devices) for distance measuring or contact sensors for
detecting touch impulses. For image recognition, the EyeBot controller supports a
monochrome or a color camera.

In order to accurately simulate the underwater environment, a proper physics sim-
ulation is needed. The AUV, as an active object, and additional passive objects
are supposed to interact with the environment in a similar manner to the physical
reactions of real objects. The influences of forces, collisions and as well liquid effects
have to be considered. Virtual sensors like a PSD or camera have to act like their
real counterparts, so the controller program deals with the same data as in the real
environment.

The 3rd party library ”Physics Abstraction Layer” (PAL) [PAL 05] with the physics
engine ”Newton Dynamics”1 offers simulating an underwater environment. PAL
wraps an abstraction layer around the engine and allows additional implementations
for simulating hardware devices. As a free and fast open source library supporting
water scenarios, Newton was the physics engine of choice.

For visualizing the World and its WorldObjects on the computer screen, a three
dimensional representation of the graphical objects is needed. The common program
and popular file format, ”Milkshape 3D ” (MS3D)2 is used for graphical model files.
The low polygon 3D modelling program is freely distributed and widely spreaded. It
easily allows creating complex graphical models out of primitive geometries, which
can be exported and displayed in 3D rendered scenes.

OpenGL (Open Graphics Library)3 realizes the drawing of the objects. It offers
3D model rendering on the computer screen from any viewpoint of the observer. It
is a specification defining a cross-language and cross-platform API. The interface
consists of over 250 different function calls that can be used to draw complex three-
dimensional scenes from simple primitives. OpenGL is widely spread in video game
development, CAD (computer aided design) and scientific visualization. A good
introduction to OpenGL can be found in [Dave Shreiner 05]

With this technique, SubSim can draw any type of obstacle that is constructed from
a set of primitive geometries. The obstacle will be simulated using the physical rep-
resentation, similar to the process of physically modeling the submarine. Obstacles

1Newton Dynamics - http://www.newtondynamics.com
2Milkshape 3D - http://www.swissquake.ch/chumbalum-soft
3OpenGL - http://wwww.opengl.org

http://www.newtondynamics.com
http://www.swissquake.ch/chumbalum-soft
http://wwww.opengl.org
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can be constructed at any position and orientation with any desired mass. This even
allows obstacles to float in the water, if they are given a low density value.

The controller program running on the EyeBot controller of an AUV is coded in the
programming language C, using its standard library function. For interacting with
the controller and its connected devices, special EyeBot functions are added.

All those special functions form together the application-programming interface
(API) called RoBIOS. The word RoBIOS stands short for Robot BIOS or Robot
basic input/output system. The functions are divided in two different parts: the
low-level and the high-level API. Whereas the low-level API provides universal func-
tions for basic in/output processing, the high-level API forms an abstraction layer by
extending the low-level API for functions interacting easily with certain actuators,
sensors and cameras. To know which hardware device is connected to which port
of the controller, a HDT (Hardware Description Table) is used, defining low-level
attributes for the hardware.

To achieve the goal to simulate and execute AUV controller programs, it is necessary
to provide at least an implementation of the low-level API together with the HDT.
The EyeBot high-level API can be sourced out in an external part of the simulation
system, in a so-called EyeBot plugin. SubSim uses plugins for extending the program
core and adding new features. A plugin has to be provided as dynamic linked library
(DLL) and is loaded at program startup or during runtime by a plugin manager.
The high-level API, realized as a SubSim Plugin, is flexible to different RoBIOS
versions and even to other controller implementations. This is clearly an advantage:
does the high-level API change, only the EyeBot plugin has to be re-adjusted, not
the SubSim core program and its low-level API.

As the EyeBot controller is used at the CIIPS group at the University of Western
Australia in Perth, the focus is especially set on this controller.

The controller is developed as a very versatile embedded robot controller system,
suitable to build lots of different applications in the context of autonomous mobile
robots, like small 2-wheel robots, omni directional robots, multiple leg robots or
humanoids. An overview of the capabilities and the different applications of the
EyeBot controller is presented in[Thomas Bräunl 00] and [Bräunl 01].

3.2 Software Architecture
The simulation system ”SubSim”uses a client-server architecture. The server consists
of the program core, the data processing unit and the Graphical User Interface
(GUI). Interfaces to the so called ”Clients”, which is either a Plugin or a controller
program, are provided through the two APIs ”APIPlugin” and ”APILow-Level”.

Figure 3.2 gives an overview of the software architecture. The name of the main
class in each layer is printed in italics.

The server itself is structured in a multi layer based model divided in a presentation-,
control-, application- and data-layer. Besides the application settings and the class
World keeping the simulation data, the data-layer additionally contains two mod-
ules: the ”Physics Module” for processing the physical simulation and the ”Graphics
Module” for handling the object visualization.
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Figure 3.2: Overview of the layer architecture

The GUI consists of the presentation- and control-layer. Whereas the first layer keeps
the functional parts for visualization, the second layer offers elements for controlling
the program and simulation. This includes changing the users viewpoint, influencing
the visualization or interacting with the simulation by changing execution speed or
adjusting the error model parameters.

In the following, the thesis gives a closer look on the components of the system,
especially on the server with the layer model, interfaces and implementation details.
After that the focus is changed to plugins and controller programs followed by a
discussion how those clients have to be structured and are used in SubSim. The
EyebotPlugin is introduced as an example plugin implementation and an extension
of the low-level API on the same.



4. Components of the Simulation
System

4.1 The Server

A clear separation of the different parts of the simulation program, was the reason
for a server layer model. The inner communication and data exchange happens
through tight interfaces in between them. This results in a well structured and
defined hierarchy between the program parts, represented as classes.

With the standardization of the layers, code dependencies are minimized and allow
expanding or exchanging a program class or a whole layer easily. This abstraction
is, especially for future development, a big advantage.

As the EyeBot controller programs are written in the programming language C, it
was given to code the simulation program in C++. This has the advantage of being
compatible to the controller program and implement an object-oriented design at
the same time.

The SubSim program parts are several C++ classes based on classes of the applica-
tion framework ”wxWidget”1. This 3rd party library is an open source C++ frame-
work with a easy-to-use API for writing GUI applications on multiple platforms. It
offers not only GUI implementation with the typical windows widgets, multithread-
ing but also some useful extensions like a proper String class or a error handling
concept. SubSim especially takes advantage of the wxGLCanvas, an OpenGL can-
vas, for displaying the world and wxDynamicLibrary for handling clients, ie. a plugin
or controller program.

To be highly customizable, SubSim uses configuration files for the application, sim-
ulation, world and worldobjects settings. These files use the XML syntax. XML
stands for ”eXtensible Markup Language”[van der Vlist 02]. It is a World Wide
Web standard that allows information and services to be encoded with meaningful
structure and semantics that computers and humans can understand. XML is great

1wxWidgets - http://www.wxwidgets.org

http://www.wxwidgets.org
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for information exchange and can easily be extended to include user-specified and
industry-specified definition, so called ”tags”.

To get access to the settingfile data, SubSim processes these files with the help of
the 3rd party library ”tinyXML”2. TinyXml parses an XML document and builds
from that a Document Object Model (DOM) that can be easily read, modified and
saved in the corresponding classes.

4.1.1 Layer Structure

The Application Layer

The application layer consists of one object of the class called MainApp. It is inher-
ited from the wxWidget class wxApplication and represents the core of the program.
This class provides the program initialization, plugin management as well the API
implementation. As main layer, it connects the GUI with the data layer, too.

On program startup, MainApp initializes the application together with its settings
and instantiates the GUI object. Additional startup parameters, e.g. the name of
the simulation description file to load immediately, are parsed and processed. Then
the user is able to start the simulation or load a simulation description file first if
not happened yet.

The SubSim plugins are managed by a special plugin manager, which is part of the
MainApp class. The manager loads and initializes the plugins once a simulation
is loaded and keeps the plugins status and data. To load the plugin the class wx-
DynamicLibrary is used. Therefore the plugin manager is able to load a plugin, it
has to be provided as a dynamic linked library (DLL), follow the SubSim plugin
guidelines and specified in the application settings file. More details about plugins
are given in chapter ??.

With the classes APILowLevel and APIPlugin, SubSim offers two interfaces: One for
clients to interact with the simulation via low-level function and one for plugins to
access on high-level special functions such as camera processing, user in- and output,
or querying the EyeBots HDT. As the APIPlugin includes the low-level API already,
a plugin can access these functions without including the low-level API once more.

The API functions are the only connection between the external parts and the Sub-
Sim simulator. The only way for the program to influence the environment is through
these functions and the only place for the simulator to influence the execution of the
program is the implementation of these functions. This means, the simulation result
is highly depended on the implementation of the API functions. Extensive testing
is necessary therefore.

The usage of the two interfaces is different. As soon as a plugin gets loaded, it is
associated with the class APIPlugin and has access to the SubSim functions since
then.

Speaking of RoBIOS, all low- and high-level functions are defined static on the global
namespace. This means the clients can immediately use the interface, without an
explicit association. This has the advantage, that the controller program can be

2tinyXML - http://www.grinninglizard.com/tinyxml

http://www.grinninglizard.com/tinyxml
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used without changing the source code. But, as a unique connection is not avail-
able, the global static definition complicates the division between multiple running
clients. So far, multiple active object are not supported, but it is considered in future
development.

The Data Layer

The data layer holds all the data SubSim needs to execute and perform the simula-
tion. SubSim requires certain information of the active object to be simulated and
the environment in which the simulation should take place. The virtual world with
its additionally passive objects and some other parameters like the visualization or
physics engine settings have to be provided.

All configuration data is to be provided in several XML description files. There are
four different types:

• Application description file

• Simulation description file

• World description file

• WorldObject description file

Figure 4.1 shows the overall structure and relations of the settings files. The dotted
boxes are parts (XML tags) in the file. A solid line box is a reference to an external
description file, whereas a folded corner box indicates an external XML file.

Through the XML syntax the files are quite intuitive and easy to create or edit. All
the positional coordinates are specified in meters. Example XML files can be found
in the appendix B of this thesis.

The application setting file has to be named settings.xml and stored in the same
directory as the SubSim executable. It is independent from other settings files and is
loaded on the startup of the simulator program. This file keeps the directory path to
the world, object, GUI resource and plugin files. Graphic settings like screen width
and height, as well a list of plugins to use in SubSim can be given.

A simulation file is the main configuration file for a simulation run and describes a
scenario consisting of the environment and its objects. The file is needed in SubSim
for starting a simulation and must have the suffix .sub.

First of all, the environment is described by giving the path to the world file. Ad-
ditional active and passive objects are specified in a worldobject list, by giving the
path to their description file. Active objects need a controller program and a HDT
file in addition. Default settings for view, general physics settings and visualization
can be described optionally.

A *.sub file can be loaded via the menubar of the GUI or given as startup parameter
for loading immediately the scenario after initializing SubSim.

The world description file consists of the environment settings with its measures and
graphic files. Depending on the specified heightmap and texture, this can be a pool
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Figure 4.1: Overview of the description files

or an open terrain. A heightmap is a gray scaled bitmap file where white values
indicate high points, and black values indicate low points (see figure 4.3).

The overall physical simulation parameters, such as gravity and water have to be
defined. Default objects can be given like in the simulation file as a list of WorldOb-
jects. The world description file can not be loaded directly from SubSim. Instead it
has to be referenced in a simulation file once. There can be only one world file per
simulation.

As a WorldObject consists of a graphical and a physical object, the XML file has
to describe both parts. It controls the physical properties like mass, dimension and
position, as well the connected actuators and sensors. The graphical description
consists of the Milkshape 3D model file. In case this model differs from the phys-
ical object, scale and offset settings are to be given. A WorldObject turns into a
WorldActiveObject by using the <Submarine> XML tag and specifying the path to
its HDT file. Like a World file, a WorldObject file can not be directly loaded by
SubSim and has to be referenced in a simulation file or world file instead.

Now, as the structure and content of the settings files is clear, the following part
discusses their handling within SubSim.

One major part of the data layer is the class Settings. It purpose is to read and parse
the application and simulation file for storing the data and supplying the program
parts. The class follows the singleton design pattern [Rausch 04], as only one class
instance is needed throughout the simulation program. The class is once instantiated
and available on the global scope since then. This has the advantage that every class
can access this class without the need of an explicit association.
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With the data of the Settings class, the program core can build a World object.
This happens by creating an instance of the class World giving the path to the
worlds settings file. Additionally objects are added afterwards. The World class
purpose is to hold all the information of the environment and perform the physical
and graphical processing on its active and passive objects. It holds four different
lists with all WorldObjects : First for objects in the background (like terrain), second
for objects in the foreground (like water), third and fourth for passive and active
objects. This differentiation is useful for dealing with the objects. As the fore- and
background objects are not touched during simulation, all the active and passive
objects can be accessed easily.

A WorldObject class itself consists of a PhysicsObject to link to the physics module
and a GraphicsObject for linking to the graphics module. They are both compulsory
and immediately created in the constructor of each object. The separation of the
graphics and physics in different modules provides the ability to change and extend
these parts easily in future development. This is a great advantage because especially
the physics engine which is partly 3rd party software is still under development and
may need to be exchanged or partially replaced in the future.

Depending on the kind of the object, different objects are inherited from the Worl-
dObject. This can be a submarine as WorldActiveObject or a terrain and water as
passive objects. Figure 4.2 gives an overview.

Figure 4.2: WorldObject class hierarchy

The environment terrain in SubSim is represented the WorldTerrain class as a
heightmap. From these values terrain heights are constructed as graphical model,
as illustrated in figure 4.3. Heightmap usage is commonly found in geospacial ap-
plications, allowing simulation of realistic terrain conditions by directly importing
real world data.

A very special configuration is the WorldActiveObject class and in particular the
Submarine class. For each simulated AUV one WorldActiveObject is created, ex-
tended for a HDT and extra hardware devices as sensors, actuators and cameras.
A separate ClientThread runs and executes the EyeBot controller program. It does
not matter which API the program is using. If the library the program is dynami-
cally linked against is not available an exception is thrown. The separation of class
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Figure 4.3: Heightmap Terrain

Submarine inherited from WorldActiveObject enables future introduction of other
active objects than a submarine.

In the following the two major parts of an object, the physics and graphics module,
are discussed:

The Physics Module

The physics simulation and calculation are outsourced in the 3rd party library
”Physics Abstraction Layer” (PAL) with the physics engine ”Newton”. It is con-
nected to the WorldObject via the wrapper class PhysicsObject.

Each WorldObject is physically simulated as a collection of bodies and geometries
that represent the overall physical structure of the object. The physics module is
responsible for calculating their position, movement and interaction with the sur-
rounding environment. The effects of water, gravity, actuators, hydroplanes and
collisions must be considered as forces applied on the body of the object.

One can say, the physics system is devided in two layers:

The first layer is the low-level physics. It consists of the basic physical simulation and
is handled by the Newton package. It is responsible for keeping the bodies position,
orientation and applying the forces to these bodies. The integration of Newton is
straightforward according to the documentation and needs no special modifications.
The simulation for collisions and water gravity is already implemented and can be
used.

Second, the simulation of the various sensors and actuators is done in the high-level
layer. This is the responsibility of PAL as well the communication to the Newton
library in the low-level layer.

Sensors

Simulation of the sensors is a critical part of SubSim. It is essential to model sensor
behavior in order to provide a realistic simulation environment for the AUV. SubSim
offers a large range of positional, orientation and contact sensors. Most of the sensors
can be directly modeled from the data available in the low-level physics. Every
sensor is attached to a WorldActiveObject that represents a physical AUV model.
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To present reasonable approximations to real sensors, the location of the sensors to
the AUV must be defined by a position and orientation vector in the worldobjects
settingsfile. The following list shows all sensors available in SubSim:

A Positional Sensitive Device (PSD) is a sensor to detect the distance from itself to
the nearest object blocking its line of sight. Figure 4.4 illustrates the operation of a
PSD sensor. A sensor ray is projected from its position (in this case the cube), in a
specified direction (indicated by the arrow), until it reaches an object (the triangular
prism). The distance between these two objects (ie: the length of the red line) is
the returned value from the sensor.

Figure 4.4: PSD Sensor

This sensor is simulated by using a ray-casting approach. A ray is cast from the
PSDs position along the given direction until an intersection with another object
in the environment is found. The sensor also has a maximum range at which it
will indicate no intersection with any object. The low-level physics collision data
structures are used to perform the ray casting. The maximum range and direction
to cast to has to be described in the settings file.

An inclinometer sensor returns the angular orientation of a body. This sensor is
simulated by extracting the orientation information of the attached body from the
low-level physics. For that, the inclinometer sensor requires an input vector given in
the settings file that, along with the position, indicates the plane about which the
rotation angle is detected.

A gyroscope sensor is similar in its function to an inclinometer, in that it returns the
angular velocity of a body. The gyroscope is implemented by either relying on extra
velocity information available from the low-level physics library or by calculating
the value from the body’s previous angular positions. Like the inclinometer, the
gyroscope requires an input vector for the plane to detect the rotation angle.

The compass sensor indicates the heading of a body relative to a global heading.
This is simulated by an inclinometer restricted to the horizontal plane.

The velocitymeter sensor indicates the velocity at which the body is moving. The
input vector given in the settings file indicates the direction in which the velocity is
measured. This information can be extracted from the low-level physics layer. The
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velocitymeter sensor will return the true velocity the body is moving at, and not the
velocity relative to the water drag.

The contact sensor differs from the PSD sensor in that it detects any contact, and
the location of the contact, that occurs on any given physical body. This allows
the user to simulate simple bump sensors and also allows recording of locations
where collisions occurred. This makes the contact sensor a powerful debugging and
evaluation tool. The collision data structures of the underlying low-level library are
queried when any contact occurs.

The camera, as the visual sensor, is not handled by the physics layer. Instead,
the class SubSimCamera provides the data through rendering the environment and
grabbing a frame. The procedure and handling is described in chapter 4.1.2

Actuators

The actuators provide the propulsion system of the submarine. They are responsible
for active movement. SubSim provides two kind of actuators: one is a DC motor for
moving links, such as a hydroplane, and another is a propeller for providing thrust
to the underwater body.

The DC motor simply applies a rotational force to the body that it acts upon. There
are two DC motor models exposed by SubSim:

A time-based model, typically used for controlling link torques:

TA(t) = KT
Vα(t) − K ∗ ω(t)

R

TA(t) is the torque
KT is the motor torque constant (Nm/A)
Vα(t) is the applied armature voltage (V)
K is the motor back emf constant (Vs/rad)
ω(t) is the angular velocity of the motor (rad/s)

And a transfer function model, used for calculating the propellers angular velocity:

θ

V
=

K

(J + b) ∗ (L + R) + K2

J is the moment of inertia of the rotor
b is the damping ratio of the mechanical system
L is the rotor electrical inductance
R is the terminal electrical resistance
K is the electro motive force constant

The first motor model is the standard armature controlled DC motor model, the
second model is the armature motor model expressed as a transfer function. This
allows a choice of model according to the users desired control output.

The propeller actuator is based on the lumped parameter dynamic thruster model
developed by D.R. Yoerger et al [D. R. Yoerger 91].
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The thrust produced is specified by:

Thrust = Ct ∗ Ω ∗ |Ω|

Ω is the propeller angular velocity
Ct is the proportionality constant

The Graphics Module

A graphical model of the WorldObjects is used to provide a user-friendly three-
dimensional display. Additionally, it is needed to render and provide the image of a
camera sensor.

The objects geometry is specified as a collection of boxes, spheres and cylinders.
Each geometry object has its dimension, position and orientation. The combination
of all geometries specifies the overall graphical body. All the geometries descriptions
are imported through the Milkshape3D graphical model file. There are numbers
of freely available editors and converters for this format allowing easy creation or
conversion between various common CAD files.

The graphical model for MAKO AUV, developed in Milkshape3D, is shown in the
next figures. Figure 4.5 shows the CAD view, as well the dimension measurements.

Figure 4.5: MAKO CAD model

Figure 4.6 shows the Milkshape3D rendered view of the model.

To display the graphical model in SubSim, the WorldObject is connected with the
graphics module through the class GraphicsObject. The graphics module consists
of a set of classes for handling the model drawings in OpenGL. The Milkshape 3D
models with bitmap textures are loaded and rendered according to the users current
viewpoint and the objects position and orientation.

Care should be taken that the graphical model reflects the physical model used for
collision detection. As they are handled and described separately consistency of their
measurements is not necessarily given. The scale attribute in the object description
file is used to match the models.
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Figure 4.6: MAKO rendered model

The Presentation and Control Layer (GUI)

A Graphical User Interface (GUI) is a human-computer interface that uses windows,
icons and menus, which can be manipulated by mouse and/or keyboard. Besides
the visualization of the environment and giving simulation data, it enables the user
to interact with the program and simulation. The GUI of SubSim is divided in two
parts:

1. the presentation-layer which visualizes and displays data and

2. the control-layer which receives data input from the user.

SubSim uses classes and widgets from wxWidgets to build its GUI. The main window
is an instance of the class MainFrame inherited from wxFrame. Additional windows
can be included in a plugin or are CameraFrames to display images taken by cameras
attached to a WorldActiveObject.

As seen in figure 4.7, the main window consists of the usual menubar on the top
and statusbar along the bottom of the window frame. The menubar allows loading
a simulation file, gives access to the plugin frames and the help system. The status
bar is divided into several fields showing useful information of the simulation. There
are fields for displaying generic text messages, number of running active objects,
simulation time and render frame rate.

Besides that, the GUI consits of the World panel on the top left, the Control panel
on the top right and the Info panel on the bottom.

The world panel is meant for displaying and controlling the simulation world. The
main class is WorldRenderCanvas which shows the rendered environment with the
objects according to the users viewpoint. It is inherited from the class wxGLCanvas,
a canvas provided by wxWidgets to visualize OpenGL scenes. The user’s viewpoint
is controlled by a virtual camera, which takes continuous pictures of the scene. The
cameras position, orientation and zoom are either controlled by mouse, keyboard or
GUI sliders surrounding the canvas. A list of the command keys can be found in
appendix E.

The control panel, located on the right, consists of widgets to influence the simula-
tion, to change the cameras viewpoint or to switch the visualization of the simulation.
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Figure 4.7: The SubSim main frame as Graphical User Interface (GUI)

The three buttons on the top, start, pause and stop the simulation. Whereas pause
just interrupts the simulation, stop resets the simulation to its original beginning
state. The simulation speed is adjusted with the slider beneath. It allows decelerat-
ing or accelerating the simulation time. The physical noise slider sets the error noise
value of the physic engine.

Clicking the four view buttons changes the camera’s viewpoint to a preset view.
A choice can be made between front, top, side or initial view (settings from the
simulation file).

The WorldCamera can be changed to a StereoCamera to see the World as a 3D
anaglyph image. As the view is dependent on the users eye separation and angle,
those parameters are adjusted with the wxSpinControl widget beneath.

By selecting an objects name from the dropdown box, the camera will start following
this object. Sensors and cameras of all active objects can be visualized with selecting
the checkboxes. The static option displays the sensors all the time, the dynamic
visualizes the sensors only when the controller program reads from.

The Information panel is a wxNotebook widget and holds a set of pages to get
information about the simulation, world or each active object.

One is the Message Page. It is the first page and consits of a messagebox. In here
debug or information messages from the controller program are printed.

The second page is the World Page containing a table with all the object data such
as name, current position and orientation. An object is manual placed by clicking
in a cell and changing the value to the desired position or orientation.
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The ActiveObject Page holds all the information from an active object. For every
WorldActiveObject a special page is added to the information panel, displaying the
HDT data and allowing access to the different cameras attached to the object. On
the left side a table with the HDT data is placed. The table can be manually or
automatically updated for monitoring the sensor values. If the object holds cameras,
the user can look at the camera picture by clicking any of the view buttons for every
camera on the bottom of the page. By doing so, this opens an extra frame of the
class CameraFrame so the user has the opportunity to see the current image shot
by the camera. This helps debugging if an additional view, like the EyebotPlugin
LCD, does not display the current camera picture.

4.1.2 Rendering Procedure

To render a world, a camera is needed to set the viewpoint and perspective. After the
viewpoint is set, the World class render function loops through all its objects calling
their render functions. First the background objects like the terrain are processed.
These are followed by the normal objects. This can be either a WorldActiveObjects
or a passive WorldObject involved in the scene. Finally objects in the foreground are
drawn. Once the render method of any WorldObject is called, its graphical object has
to be updated first. This occurs through getting the current transformation matrix
from the physics object. The matrix holds the position and rotation information
which are applied to the graphical model. Afterwards the object gets drawn with
the help of the graphics engine on the current OpenGL canvas.

The Camera Classes

As mentioned, a camera is necessary to set the scenes viewpoint or to get the image
of a camera attached to a WorldActiveObject. A camera is represented by the class
WorldCamera or inheritations of this class.

So far there are three different Cameras available:

1. WorldCamera

2. StereoCamera (inherited from WorldCamera)

3. SubSimCamera (inherited from WorldCamera)

The WorldCamera is the standard and main camera for visualizing the environment.
It is meant as a usual camera and features changing its position, zoom and angles.
In addition, a WorldObject can be associated which the camera follows.

The StereoCamera is meant for displaying a three-dimensional view. It extends the
WorldCamera for an anaglyph picture. The image is produced by combining color-
filtered images from two slightly different viewpoints into a single image. These
images may then be viewed with ”anaglyph glasses”, which use color filters to mod-
erate the light reaching each eye to create the illusion of a three dimensional image.

One of the most prominent features of SubSim is the capability to simulate a physical
camera attached to a WorldActiveObject. This allows controller programs real-time
image processing, e.g. for obstacle avoidance or target detection and tracking. The
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camera implementation is realized with the class SubSimCamera, inherited from a
WorldCamera. The camera position and angle are fixed and only changed by moving
the object. To grab a picture and pass it to the controller program, a buffer, called
p-buffer[PBuffer 04], for offscreen rendering is used. This buffer can be read using
the EyeBot high-level API calls. The default camera functions have a resolution of
80*60 pixels (extended to higher resolutions) at 24bit color per pixel.

4.2 The Clients
There are two major types of clients: One is the plugin extending the functionality
of SubSim and the other is the controller program controlling the active object. A
controller program can again be divided in high- or low-level API usage.

The high-level API is EyeBot controller specific, and provides much more functions
and easier handling of the hardware devices compared to the low-level API. On
the other hand the low-level API is faster and more compatible to other types of
controller besides EyeBot.

The following part details both types and introduces the EyebotPlugin as an example
plugin and implementation of the EyeBot RoBIOS high-level API.

4.2.1 Plugin

A plugin is meant for extending the functionally and the GUI interface of SubSim.
This may be an extension of its low-level API (as the EyebotPlugin does) or eg.
adding special observers for data tracking. A plugin connects to the program core
MainApp trough the interface called ”APIPlugin”, represented by the class with the
same name. The plugin is automatically associated with this interface and its only
connection for communication and data exchange with the simulator.

A plugin is a normal C++ library using the standard C functions as well all addi-
tional libraries SubSim offers. Its framework and GUI are, like SubSim, based on
wxWidgets. To create a GUI, the class PluginFrame must be used.

In order SubSim can include and handle plugins properly, thier development has to
follow some guidelines:

• The plugin must inherit from the class Plugin as well the GUI frame must
inherit from PluginFrame.

• Make sure to provide a pluginname, version and description in the headerfile.
This information is displayed to the user and helps track changes in plugins.

• Include the line DECLARE DYNAMIC CLASS(classname) in the plugin class
declaration and the line IMPLEMENT DYNAMIC CLASS(class name, plu-
gin) in the class implementation file. This is part of the wxWidgets dynamic
class system and is needed so SubSim can create an instance of the plugin.

For including a plugin in SubSim it has to be compiled as a dynamic lilbrary (DLL)
and specified in the plugin list of the application settings file. Several parameters
can be given there also. On the next program start up, the plugin is automatically
loaded and initialized. In case the plugin provides a frame, it can be viewed via the
plugin menu in the menubar of the SubSim main frame.
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EyebotPlugin

The EyebotPlugin is an example plugin for SubSim. It extends the simulator for the
EyeBot RoBIOS high-level functions. This API provides special functions based on
the SubSim low-level API. With that the user is possible to deal easily with the sev-
eral sensors, actuators and cameras and perform data input/output through a GUI
interface. The GUI interface is a frame with a 128 pixel width and 64 pixel height
monochrome LCD and four inputkeys. It is provided through the class EyeBotFrame
inherited from PluginFrame. All the text and graphic output is displayed like on
the real EyeBot counterpart. To manipulate the display content, the high-level API
offers three different ways:

• Printing characters or text

• Drawing simple shapes like lines and filled areas

• Fill the display with an image, e.g. an image grabbed from the camera

Two buffers handle the content and provide the output to the LCD: one textbuffer
for keeping all the character input and one imagebuffer for drawing the shapes or
grabbing the camera’s image into.

To perform a keyboard input, the user has to focus the EyeBotFrame and click on
one of the virtual keys. This invokes a key event stored in the keyboard buffer. The
RoBIOS allows to read the keyboard buffer non-blocking or to wait for a specific key
or any key to be pressed. Figure 4.8 shows the plugin frame with the LCD (1) and
inupt keys (2).

Figure 4.8: The EyebotPlugin Frame

Besides the EyeBotFrame, the actual API implementation is subdivided in several
managers to keep a clear and logical separation of the RoBIOS function subsets.
Figure 4.9 shows the class hierarchy with the manager classes of the plugin. The
following list gives a short description of all managers:
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Figure 4.9: Class hierarchy of the EyebotPlugin

• The EyebotCamManager manages grayscale or a color camera functions for
grabbing and manipulating images.

• The EyebotKeyManager manages the userinput via the four input keys in the
EyeBotFrame.

• The EyebotLcdManager displays text and images on the LCD of the EyeBot-
Frame.

• The EyebotMotorManager manages initialization and communication to all
actuators.

• The EyebotOsManager manages some basic functions for retrieving informa-
tion like the ID of the active object, its name or the current time. For dealing
with RoBIOS system, the timer-, multithreading- and data exchange functions
are managed.

• The EyebotPsdManager manages initialization and communication to the PSD
sensors.

• The EyebotCompassManager manages initialization and communication to the
digital compass.

• The EyebotGpsManager manages initialization and communication to GPS
sensor to get the current GPS position.
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• The EyebotGyroManager manages initialization and communication to gyro-
scope sensor to measure the objects orientation.

• The EyebotInclinoManager manages initialization and communication to the
inclinometer sensor for measuring inclination.

As the EyeBot plugin is an essential part of SubSim providing the RoBIOS high-level
API, it is distributed with the simulator program and default loaded on program
startup.

4.2.2 Controller Program

The controller program, to be simulated in SubSim, is the same program which is
executed on the controller of a real AUV model. To execute this program in SubSim,
no changes in the code are needed. The only difference to the usage on a AUV model
is the program compilation and API linkage: It must be compiled as dynamic library
(DLL) and linked against the SubSim library providing the low-level API or against
a plugin containing the RoBIOS high-level functions headers.

The controller program file has to be defined with the HDT file in a worldobject
settings file. SubSim treats the file as a client. Depending on the linkage it is
connected to the simulation core trough the low-level API or the plugin providing
the API linked against. In case of the RoBIOS high-level API this is the EyeBot
plugin.



5. Example Simulation Case:
Pipeline following

The following summarizes the project achievements with an example simulation
case and demonstration of the program features. The simulation case targets a
submarine MAKO controlled by an EyeBot controller moving along an underwater
pipeline. It is an example for a common AUV application. Because of the deep and
the underwater pressure it is too difficult and dangerous to send down scuba divers
to the seabed. Instead AUVs are used to test pipelines or other objects for leaks,
obsolescence and damage.

Figure 5.1: SubSim with the environment terrain loaded from a hightmap file.
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5. Example Simulation Case:

Pipeline following

In this example the down directed onboard camera takes continuously pictures of
the seabed and pipeline. An image recognition algorithm on the controller processes
the images. The submarine motion is adjusted to the determined pipeline position.
Additional PSD sensors measure the distance to the object to keep a certain range.

The simulation environment is set up with the creation of the user defined terrain.
The height information is taken from a heightmap bitmap file. Additional objects, in
this case a pipeline of several sectors on the seabed, are placed afterwards. Figure 5.1
shows the terrain with the pipeline and the heightmap bitmap.

Figure 5.2: Submarine MAKO placed in the environment with the EyeBot Plugin
frame loaded.

Once the environment is created, the active objects are added to the simulation. In
this example the submarine model MAKO is put to the defined start position, as
shown in figure 5.2.

The next step is to load the plugins required by the simulation. As the controller
program uses the high-level API, the EyeBot Plugin is loaded and initialized. The
plugin provides an extra frame to display the LCD output and to receive user input
from the buttons.

Figure 5.3: The World Page table with object coordinates.

As soon as all components are loaded, the simulation is ready to run. The user can
start the simlation with the start button on the top right of the main window. The
other buttons are to pause and stop the simulation. button. Whereas the pause
button just interrupts the simulation, the stop button resets the simulation to its
original beginning state.
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The view of the simulation scene is dependent on the world camera’s placement.
Position, orientation and zoom are either controlled by mouse, keyboard or GUI
sliders surrounding the world panel canvas. A list of the command keys can be
found in appendix E.

During simulation time several parameters can be monitored for debug purposes.
The information is combined on the bottom panel, subdivided in multiple pages for
messages, world- and active object data.

Figure 5.4: The ActiveObject Page with the HDT table and camera button.

Debug and information messages from the simulation or controller program are col-
lected on the Message Page. The next page, called World Page, contains a table
with all the object data such as name, current position coordinates and orientation
as shown in figure 5.3. An object is manual placed by clicking in a cell and changing
the value to the desired position or orientation.

The ActiveObject Page holds all the information from an active object. As shown
in figure 5.4, the page displays the HDT data table and gives access to the different
cameras attached to the object. The HDT table can be manually or automatically
updated for monitoring the sensor values.

Figure 5.5: The camera frame showing the picture of a down directed camera rep-
resented as a red pyramid.

In case cameras are attached to the object, the user can look at the camera picture
by clicking any of the view buttons for every camera on the bottom of the page.
This opens an extra frame as shown in figure 5.5.
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Pipeline following

The simulation system supports visualization of PSD sensors and cameras attached
to the object. The visualization can be switched on and off via the control panel or
the menubar. Cameras of the submarine are presented as a red pyramid. According
to the cameras orientation, the pyramid base points in the direction of the camera
picture as shown in figure 5.5.

Figure 5.6: The submaine’s PSD sensors visualized in static mode as a green line.

PSD sensors are visualized as a green line representing the sensors ”line of sight”.
Two different modes are available: static or dynamic. Whereas the static option
displays the sensors ray all the time, the dynamic visualizes the sensors only when
the controller program reads from. Figure 5.6 shows the sensors visualized in static
mode.

SubSim features as three dimensional view of the simulation scene. Is the ”Stereo
View” option activated, the visualization is changed to a 3D anaglyph image as
shown in figure 5.7. The view is dependent on the users eye separation and angle.
Those parameters are adjusted with the spincontrol widget in the control panel.

Figure 5.7: 3D anaglyph view of the simulation scene



6. Conclusion

This thesis project has achieved the following outcomes for the SubSim simulation
system.

6.1 Achievements and Program Features
After four month of developing, program engineering and finally implementing the
concept, the simulation program SubSim has reached the point of a first version to
be released. The basic core functionality and its program framework are operating
stable. The connection of the underlying physical and graphical models is finished.
The structure of the settings files has been defined and is used in the simulation
program.

To summarize, the simulator provides all advantages of a usual simulation environ-
ment:

• Run simulation in slow motion and time laps effects.

• Creating user-defined underwater environments in which the AUV acts in in-
cluding different kind of objects to interfere with.

• Highly customizable through XML settings files for application, simulation,
world and its objects .

• Plugin extension through interface for future expansions of SubSim functions
and GUI.

• Low-Level interface for universal client programs.

• Implementation of the Eyebot RoBIOS high-level interface as EyebotPlugin.

• Fully support of a grey and color cameras.

• Basic physic engine suitable for underwater environments with the support of
sensors and actuators simulation.
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• Comprehensive documentation and helpsystem for SubSim enduser, plugin
developer and for continuing work on the SubSim program.

• Various low- and high-level examples to demonstrate API usage

The SubSim Simulation program can be downloaded from:
http://robotics.ee.uwa.edu.au/auv/ftp.

6.2 Future Work

The simulator is finished to a usable and distributable version. But never the less,
lots of work has to be done for a final version. Most effort has to be put in the plugin
development. Due to the lack of time some of the EyebotPlugin high-level functions
are merly insufficiently implemented. This may result in extending the plugin API
to get access to more simulation data and functions.

SubSim will offer more functionality as more plugins are developed. Additional
requirements were made. Data trackers for object positions and sensor data are
requested. The tracked data, saved to a file, can be visualized and processed by an
external program. Other plugins could extend SubSim for more hardware support
like Bluetooth or WLAN.

On the long hand the simulation system can be opend for other robot models,
different to submarines. Other types of robot models developed at the CIIPS groups
are to be simulated.

http://robotics.ee.uwa.edu.au/auv/ftp


A. Interface Description

APILowLevel

The low-level API consists of the following five functions:

SS_DID InitDevice( char* device_name );

SS_ERROR ReleaseDevice( SS_DID device );

SS_ERROR GetTime( SS_CLOCK *time );

SS_ERROR SetData( SS_DID device, DeviceData* data );

SS_ERROR GetData( SS_DID device, DeviceData* data );

The function InitDevice() initializes the device given by its name and stores it
in the internal registry. It returns a unique handle SS DID that can be used to
further reference the device (e.g. sensors, motors). The function ReleaseDevice()

releases the handle and device. Function GetTime() returns a time stamp holding
the execution time of the submarines program in milliseconds. In case of failure an
error code SS ERROR is returned. The functions that are actually manipulating
the sensors and actuators and therefore affect the interaction of the submarine with
its environment are either the GetData() or SetData() function. While the first
one retrieves the data (e.g. sensor readings), the later one changes the internal state
of a device by passing control and/or information data to the device. Both return
appropriate error codes if the operation fails.

APIPlugin

The Plugin API consists of the low-level API and the following functions:

wxWindow* getParent(); - returns the pointer to MainFrame
void CAMGetFrame(wxImage *image); - grabs a frame from the current camera
into image
void* HDT_FindEntry(TypeID id, DeviceSemantics ds); - finds a HDT entry
int HDT_Validate(); - validates HDT
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int HDT_TypeCount(TypeID id); - returns amount of a certain entry type
char* HDT_GetString(TypeID id, DeviceSemantics ds); - returns the name of
a HDT entry
DeviceSemantics HDT_FindSemantics(TypeID id, int k); - returns semantics
of a HDT entry

EyeBot high-level

For a complete list of the EyeBot RoBIOS functions please refer to
http://robotics.ee.uwa.edu.au/eyebot/doc/API/library.html

http://robotics.ee.uwa.edu.au/eyebot/doc/API/library.html


B. Description Files

Application File

1 <?xml version="1.0"?>
2 <Application name="SubSim">
3 <Graphics >
4 <Screen top="100" left="100" width="640" height="480" />
5 </Graphics >
6

7 <WorldPath >worlds/</WorldPath >
8 <PluginPath >plugins/</PluginPath >
9 <ResourcePath >resources/</ResourcePath >

10 <ObjectPath >objects/</ObjectPath >
11 <RobotPath >robots/</RobotPath >
12

13 <Plugins >
14 <Plugin file="eyebotPlugin.dll" name="EyebotPlugin" />
15 </Plugins >
16 </Application >

An application settings file has to start and end with the <Application> tag. Dif-
ferent tags to set the graphical environment, default path and plugins are allowed.

The <Graphics> tag surrounds a <Screen> tag to set resolution and position of the
GUI frame.

The list of plugins to load on program startup is given with the <Plugins> tag. The
plugin itself is defined by the <Plugin> tag, with the attributes ”file” for the plugin
filename and ”name” for the plugin name.
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Simulation File - Example Wallfollowing

1 <?xml version="1.0"?>
2 <Simulation >
3 <Docu text="Wallfollowing example"/>
4 <World file="pool.xml" />
5

6 <WorldObjects >
7 <Submarine file="./mako.xml" hdtfile="./mako.hdt">
8 <Origin x="3.0" y="0.0" z="3.0"/>
9 <Client file="./ wallfollowing.dll" />

10 </Submarine >
11 </WorldObjects >
12

13 <SimulatorSettings >
14 <Physics noise="0.002" speed="15"/>
15 <View rotx=" -20" roty=" -20" strafex="-3" strafey=" -11"
16 zoom="10" followobject="Mako AUV"/>
17 <Visualize psd="dynamic" camera="true"/>
18 </SimulatorSettings >
19 </Simulation >

A simulation file has to start and end with the <Simulation> tag. In between
different tags are allowed:

The <World> tags specifies the world file. This tag is compulsory and can be used
only once.

The list of all world objects is defined with the <WorldObjects> tag. This tag must
surround all world object entries.

Passive objects are defined by the <WorldObject> tag, active ones by the <Subma-

rine> tag. The filename and path to the object’s description file is given in the
attribute ”file”. If no path is given, the default path for world objects files is used.
To adjust position and orientation of the object, the <origin> and <orientation>

tag is used as shown in the example.

Additional simulation settings are surrounded by the <SimulatorSettings> tag.
There are settings for physics engine (<Physics>), viewpoint (<View>) and visual-
ization (<Visualize>).
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World File - Example Pool

1 <?xml version="1.0"?>
2 <World>
3 <Environment >
4 <Physics >
5 <Engine engine="Newton" />
6 <Gravity x="0" y=" -9.81" z="0" />
7 </Physics >
8 <Water>
9 <Dimensions width="24" length="49" />

10 <Texture file="water.bmp" />
11 </Water>
12

13 <Terrain >
14 <Origin x="0" y="-3" z="0" />
15 <Dimensions width="25" length="50" depth="4" />
16 <Heightmap file="pool.bmp" />
17 <Texture file="stone.bmp" />
18 </Terrain >
19 </Environment >
20

21 <WorldObjects >
22 <WorldObject file="buoy/buoy.xml" />
23 </WorldObjects >
24 </World>

A world file has to start and end with the <World> tag. It is broken up into two
aspects: The environment (<Environment>), and objects (<WorldObjects>).

The world environment consists of the overall physical simulation parameters, a
water and terrain description..

First, the physics engine and parameters, like gravity, are to defined. Second, the
origin, dimension and texture of the water and terrain are specified in the <Water>

and <Terrain> tag.

The list of world objects follows the same description as in the simulation file.
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WorldObject File - Example Buoy

1 <?xml version = "1.0"?>
2 <WorldObject name = "buoy">
3 <Origin x="8" y="5" z="0" />
4

5 <Graphics >
6 <Origin x="0" y="0" z="0.0" />
7 <Scale x="0.05" y="0.05" z="0.05" />
8 <Model file="buoy.ms3d" />
9 </Graphics >

10

11 <Physics >
12 <Primitives >
13 <Sphere name="buoy">
14 <Position x="0" y="0" z="0"></Position >
15 <Dimensions radius="1.0"></Dimensions >
16 <Mass mass= "0.9"> </Mass>
17 </Sphere >
18 </Primitives >
19

20 <Actuators >
21 <FakeBuoyancy name="buoy_water">
22 <Connection connects="buoy"></Connection >
23 <Density density="0.99829"></Density >
24 </FakeBuoyancy >
25 </Actuators >
26 </Physics >
27 </WorldObject >

A passive object file has to start and end with the <WorldObject> tag. It consists
of two parts: one is the graphics part, indicated by the <Graphics> tag, the other
is the physics part, specified by the <Physics> tag.

For the graphics, the <Origin> tag is supported to define the object’s position. The
graphic model file is specified with the <Model> tag and fitted to the physics model
by the <Scale> tag.

The <Physics> tag contains the model’s physical representation. The primitive
spheres with their position, dimension and mass are defined.
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WorldActiveObject File

- Example AUV ”MAKO”

1 <?xml version="1.0"?>
2 <Submarine name="Mako AUV">
3 <Origin x="10" y="0" z="0"/>
4

5 <Graphics >
6 <Origin x="0" y="0" z="0"/>
7 <Scale x="0.18" y="0.18" z="0.18" />
8 <Model file="mako.ms3d" />
9 </Graphics >

10

11 <Physics >
12 <Primitives >
13 <Box name="Mako AUV">
14 <Position x="0" y="0" z="0" />
15 <Dimensions width="1.8" height="0.5" depth="0.5" />
16 <Mass mass= "0.5"> </Mass>
17 </Box>
18 </Primitives >
19 <Sensors >
20 ...
21 </Sensors >
22 <Actuators >
23 ...
24 </Actuators >
25 </Physics >
26 </Submarine >

An active object file has to start and end with the <Submarine> tag. The tags are
the passive object tags with an extended physics part. In here, sensors and actuators
are additionally defined by tags according to their name. For example, a PSD sensor
is specified by the <PSD> tag.
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C. SubSim Class Hierarchy

Figure C.1: The SubSim class hierarchy
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D. SubSim Manual

The following brief introduction to the usage of the simulation software helps to
understand how to write and use a controller program in SubSim. In order to
simulate a controller program in SubSim, the program has to be created and compiled
first. Next step is to set the simulation environment. When everything is ready,
SubSim is able to simulate the controller program.

Creating the Controller Program
The easiest way to create a controller program is to copy the whole folder named
”HelloWorld” in examples directory. This has the advantage that all necessary file
are already created and only some minor adjustments are needed. Depending on
API to use, choose the high- or low-level API example.

The folder consists of a makefile, a helloworld.cpp and a hellowor- ld.sub file.
As it is a generic makefile, no further changes are needed for this file. The other files
can be renamed as wished. It is recommended to use same name for folder, *.cpp
and *.sub file for indicating their relation. The *.cpp controller program can be
written with any text editor or development IDE. The generic texteditor ”jEdit”1,
together with its ”ConsolePlugin”, has the capability to compile the C++ controller
program easily within the editor. This is quite handy a is recommended to develop
own programs.

Assure the right API file is included: Use APILowLevel.h when developing a low-
level program, API-eyebot_highlevel.h for a high-level program. Mind that the
high-level API has much more functionality but needs the EyebotPlugin loaded and
is slower than the low-level API. A list of the function for both API can found in
the appendix A of this thesis.

Compiling the Controller Program
As compiler, the gcc compiler from the package MinGW2 is recommended. MinGW
is a collection of freely available and distributable Windows specific header files

1jEdit - http://www.jedit.org
2MinGW - http://www.mingw.org

http://www.jedit.org
http://www.mingw.org
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and import libraries combined with GNU toolsets that allow one to produce native
Windows programs that do not rely on any 3rd party C runtime DLLs.

To compile your program, change the console prompt to the working directory and
type make. This executes the makefile located in the directory, compiles the con-
troller program and creates a .dll file useable with SubSim.

Setting Up

Next step is setting up the simulation environment. This happens by defining the
several settings files. The major file is the *.sub file located in the directory. The
world with its objects and some default settings have to be specified. Add a sub-
marine to the object list and give the path to the controller program as DLL file in
the client tag. Several example world and object files are provided with SubSim and
can be used. To create new ones, take these as sample files and adjust them to your
needs.

Starting the Controller Program

To finally simulate the controller program, start SubSim and load the *.sub file
from the filemenu in the menubar. Alternatively, a double click on the *.sub file
within the windows explorer invokes SubSim to start with the subfile immediately
loaded. Once the simulation is loaded clicking the start button on top right starts
the simulation.

A more detail description can be found in the enduser documentation provided with
SubSim. This can be accessed via the helpmenu in the menubar. Sample setting files
for the application, simulation, world and object can be found in the appendix B.
These samples provide a description for all possible parameters and default values.



E. GUI Keycommands

Zoom Slider: SHIFT+CTRL+UP
Get closer to the object with the camera SHIFT+CTRL+DOWN
Strafe Y: UP
Move the camera in Y-direction (up and down) DOWN
Rotate Y: CTRL+UP
Rotate the scene around the Y-axis CTRL+DOWN
Strafe X: LEFT
Move the camera in X-direction (left and right) RIGHT
Rotate X: CTRL+LEFT
Rotate the scene around the X-axis CTRL+RIGHT
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