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Abstract 
 
 

The Genetic Programming paradigm, which applies the Darwinian principle of evolution 

to hierarchical computer programs, has produced promising breakthroughs in various 

scientific and engineering applications. However, one of the main drawbacks of Genetic 

Programming has been the often large amount of computational effort required to solve 

complex problems. There have been various amounts of research conducted to devise 

innovative methods to improve the efficiency of Genetic Programming. This thesis has three 

main contributions. It firstly provides a comprehensive overview of the related work to 

improve the performance of Genetic Programming and classifies these various proposed 

approaches into categories. Secondly, a new static population variation scheme (PV) is 

proposed, whereby the size of the population is varied according to a predetermined schedule 

during the execution of the Genetic Programming system with the aim of reducing the 

computational effort with respect to that of Standard Genetic Programming. Within this new 

static scheme the initial population size is made to be different from the initial size of the 

Standard Genetic Programming such that the worst case computational effort is never greater 

than that of the Standard Genetic Programming. Various static schemes for altering 

population size under this proposal are investigated using a comprehensive range of standard 

problems to determine whether the nature of the "population variation", i.e. the way the 

population is varied during the search, has any significant impact on Genetic Programming 

performance. It is shown that these population variation schemes do have the capacity to 

provide solutions at a lower computational cost compared with the Standard Genetic 

Programming. Thirdly, three innovations for dynamically varying the population size during 

the run of the Genetic Programming system are proposed. These are related to what is called 

Dynamic Population Variation (DPV), where the size of the population is dynamically varied 

using a heuristic feedback mechanism during the execution of the Genetic Programming with 

the aim of reducing the computational effort. The efficacy of these innovations is examined 

using the same comprehensive range of standard representative problems. It is shown that 

these new ideas do have the capacity to provide solutions at a lower computational cost 

compared with standard genetic programming and previously reported algorithms. Finally, 

further interesting research potentials for population variation are identified together with 

some of the open areas of research within the Genetic Programming and also possible future 

trends in this discipline. 



Population Variation in canonical GP 6

Acknowledgement 

 
 
I would like to express my special thanks and gratitude to my supervisors Professor Anthony 

Zaknich and Professor Thomas Bräunl for their continual support, patience, guidance, 

inspiration and encouragement.   

 

I would like to also thank my beautiful and beloved wife and lifelong partner, Nasim 

Kouchakpour, for her constant support, understanding and encouragement. 

 

I would like to show my appreciation to my family and close friends for their support. 

 

Last but not least, I am exceedingly grateful and forever indebted to my mother, Mehry 

Kouchakpour, and my father, Dr Arash Kouchakpour, for all the sacrifices they made all 

through my life and their continual support.  

 

I am certain that Mum would have been extremely proud to see this.  

I have dedicated this work to you, Mum. 



Population Variation in canonical GP 7

 TABLE OF CONTENTS 
 
 
1 INTRODUCTION AND OVERVIEW ...................................................................................................10 

1.1 INTRODUCTION TO EVOLUTIONARY ALGORITHMS .............................................................................10 
1.2 COMPONENTS OF EVOLUTIONARY ALGORITHMS................................................................................16 

1.2.1 Definition of Individuals...............................................................................................................16 
1.2.2 Population.....................................................................................................................................16 
1.2.3 Fitness Function............................................................................................................................17 
1.2.4 Selection Mechanism....................................................................................................................17 
1.2.5 Variation Operators ......................................................................................................................17 
1.2.6 Termination...................................................................................................................................18 

1.3 OVERVIEW OF TREE-BASED GENETIC PROGRAMMING .......................................................................18 
1.4 A BRIEF LITERATURE SURVEY IN GP .................................................................................................25 
1.5 SCOPE OF WORK ................................................................................................................................35 
1.6 CHAPTER OVERVIEW..........................................................................................................................38 

2 INTRODUCTION TO GENETIC ALGORITHMS..............................................................................39 
2.1 INTRODUCTORY EXAMPLE .................................................................................................................39 
2.2 REPRESENTATION OF INDIVIDUALS ....................................................................................................44 
2.3 VARIATION OPERATORS.....................................................................................................................44 
2.4 SOME THEORETICAL ASPECTS OF GA ................................................................................................46 
2.5 SCHEMA THEOREM.............................................................................................................................48 

3 TREE-BASED GENETIC PROGRAMMING ......................................................................................51 
3.1 INTRODUCTION TO LISP.....................................................................................................................51 
3.2 STRUCTURES UNDERGOING ADAPTATION ..........................................................................................53 

3.2.1 Closure Property ...........................................................................................................................56 
3.2.2 Sufficiency Property .....................................................................................................................57 

3.3 INITIALISATION ..................................................................................................................................57 
3.3.1 FULL Method...............................................................................................................................57 
3.3.2 GROW Method.............................................................................................................................58 
3.3.3 Ramped Half-and-Half Method ....................................................................................................58 

3.4 FITNESS ..............................................................................................................................................59 
3.4.1 Raw Fitness...................................................................................................................................59 
3.4.2 Standardised Fitness .....................................................................................................................60 
3.4.3 Adjusted Fitness ...........................................................................................................................60 
3.4.4 Normalised Fitness .......................................................................................................................61 

3.5 SELECTION SCHEMES .........................................................................................................................61 
3.5.1 Parent Selection versus Survivor Selection ..................................................................................61 
3.5.2 Fitness Proportionate Selection ....................................................................................................61 
3.5.3 Ranking Selection.........................................................................................................................62 
3.5.4 Tournament Selection...................................................................................................................63 
3.5.5 Greedy Over-selection ..................................................................................................................63 
3.5.6 Age-based Replacement ...............................................................................................................64 
3.5.7 Elitism...........................................................................................................................................64 
3.5.8 Genitor ..........................................................................................................................................64 

3.6 EVOLUTIONARY OPERATORS..............................................................................................................65 
3.6.1 Reproduction ................................................................................................................................65 
3.6.2 Crossover ......................................................................................................................................65 
3.6.3 Mutation........................................................................................................................................66 
3.6.4 Permutation...................................................................................................................................68 
3.6.5 Editing ..........................................................................................................................................68 
3.6.6 Encapsulation................................................................................................................................69 

3.7 CONTROL PARAMETERS .....................................................................................................................69 
3.8 PREPARATORY STEPS .........................................................................................................................70 



Population Variation in canonical GP 8

4 AN INTRODUCTION TO THE THEORY OF GENETIC PROGRAMMING ................................72 
4.1 SOME BRIEF NOTES.............................................................................................................................72 

4.1.1 The Turing Machine .....................................................................................................................73 
4.1.2 Convergence .................................................................................................................................73 
4.1.3 No Free Lunch Theorem (NFL) ...................................................................................................73 

4.2 THE CROSSOVER OPERATOR ..............................................................................................................74 
4.2.1 A Gedanken Experiment...............................................................................................................74 

4.3 GP INTRONS .......................................................................................................................................75 
4.3.1 Effective Fitness ...........................................................................................................................76 

4.4 GP SCHEMATA AND SCHEMA THEOREMS...........................................................................................78 
4.4.1 Koza’s GP Schemata ....................................................................................................................78 
4.4.2 Altenberg’s GP Schema Theorem ................................................................................................79 
4.4.3 O’Reilly’s GP Schemata...............................................................................................................80 
4.4.4 Rosca’s Rooted Tree Schemata ....................................................................................................81 
4.4.5 Poli & Langdon’s Schemata (Fixed Shape and Size Schemata)...................................................82 
4.4.6 Exact GP Schema Theorems.........................................................................................................84 

4.5 CONCLUDING REMARKS.....................................................................................................................86 
5 A SURVEY AND TAXONOMY OF PERFORMANCE IMPROVEMENT OF GP .........................87 

5.1 CLASSIFICATION OF EVOLUTIONARY ALGORITHMS............................................................................87 
5.2 OVERVIEW OF MODIFICATIONS AND IMPROVEMENTS ........................................................................90 
5.3 IMPROVED GP ....................................................................................................................................91 
5.4 IMPROVEMENTS ON COMPONENTS OF GP...........................................................................................92 

5.4.1 Variation Operator ........................................................................................................................93 
5.4.2 Initialisation ................................................................................................................................100 
5.4.3 Selection .....................................................................................................................................101 
5.4.4 Control Parameters .....................................................................................................................103 
5.4.5 Fitness and Objective Function ..................................................................................................108 
5.4.6 Termination.................................................................................................................................111 

5.5 INNOVATIVE IDEAS...........................................................................................................................111 
5.5.1 Simplification .............................................................................................................................111 
5.5.2 Modularisation............................................................................................................................112 
5.5.3 Other Innovative Ideas................................................................................................................113 

5.6 SOLUTIONS TO KNOWN ISSUES OR PROBLEMS WITHIN GP ...............................................................115 
5.6.1 Closure........................................................................................................................................115 
5.6.2 Premature Convergence..............................................................................................................115 
5.6.3 Diversity .....................................................................................................................................115 
5.6.4 Bloat and Code Growth ..............................................................................................................116 

5.7 GP VARIANTS AND HYBRIDS ...........................................................................................................121 
5.7.1 Linear Genetic Programming......................................................................................................123 
5.7.2 Grammar-Guided Genetic Programming....................................................................................124 
5.7.3 Parallel Genetic Programming....................................................................................................127 
5.7.4 Graph Genetic Programming ......................................................................................................132 
5.7.5 Cartesian Genetic Programming.................................................................................................132 
5.7.6 Page-based Genetic Programming..............................................................................................132 
5.7.7 Other Representations.................................................................................................................133 
5.7.8 Memetic Algorithms - Hybrids...................................................................................................134 

6 POPULATION VARIATION................................................................................................................135 
6.1 PRELIMINARY DISCUSSIONS .............................................................................................................135 
6.2 AN INTRODUCTION TO POPULATION VARIATION ..............................................................................137 
6.3 POPULATION VARIATION VARIANTS ................................................................................................141 

6.3.1 Population Variation Reduction Scheme....................................................................................141 
6.3.2 Population Variation Increment Scheme ....................................................................................143 
6.3.3 Random Population Variation ....................................................................................................144 

6.4 APPLICATIONS..................................................................................................................................145 
6.4.1 Symbolic Regression Problems ..................................................................................................145 
6.4.2 Digital Logic Problems...............................................................................................................147 
6.4.3 Sequence Induction Problems.....................................................................................................148 



Population Variation in canonical GP 9

6.4.4 Artificial Ant Problem ................................................................................................................149 
6.5 EXPERIMENTAL RESULTS .................................................................................................................151 

6.5.1 Symbolic Regression ..................................................................................................................152 
6.5.2 Digital Logic Problems...............................................................................................................159 
6.5.3 Sequence Induction Problems.....................................................................................................167 
6.5.4 Artificial Ant Problem ................................................................................................................169 

6.6 CONCLUSION AND FINISHING REMARKS...........................................................................................172 
7 DYNAMIC POPULATION VARIATION...........................................................................................174 

7.1 INTRODUCTORY NOTES ....................................................................................................................174 
7.2 INTRODUCTION TO DYNAMIC POPULATION VARIATION ...................................................................175 

7.2.1 Stagnation Phase Assessment .....................................................................................................177 
7.2.2 Role of the Pivot Function..........................................................................................................180 
7.2.3 Constant Replacement ................................................................................................................181 
7.2.4 Computational Effort ..................................................................................................................182 
7.2.5 General Remarks ........................................................................................................................182 

7.3 EXPERIMENTAL RESULTS .................................................................................................................184 
7.3.1 Symbolic Regression Problem....................................................................................................184 
7.3.2 Digital Logic, Sequence Induction and Artificial Ant Problems ................................................188 

7.4 CONCLUSION ....................................................................................................................................192 
8 EVALUATION AND ANALYSIS.........................................................................................................194 

8.1 A STATISTICAL ANALYSIS................................................................................................................194 
8.2 A PRELIMINARY WORD ON DIVERSITY ............................................................................................207 
8.3 PHENOTYPIC DIVERSITY MEASURES ................................................................................................209 
8.4 ANALYSIS OF STATIC POPULATION VARIATION ...............................................................................211 

8.4.1 Reduction Profiles ......................................................................................................................211 
8.4.2 Increment Profiles.......................................................................................................................215 
8.4.3 Increment versus Decrement ......................................................................................................218 
8.4.4 Increment Does Not Work in Some Instances............................................................................221 

8.5 DYNAMIC POPULATION VARIATION .................................................................................................224 
8.5.1 A Closer Look at the Pivot Function ..........................................................................................224 
8.5.2 Why DPV Works........................................................................................................................230 
8.5.3 An Insight into Stagnation ..........................................................................................................234 

9 CONCLUSION .......................................................................................................................................247 
9.1 SUMMARY AND CONCLUDING REMARKS..........................................................................................247 
9.2 FUTURE RESEARCH ..........................................................................................................................249 

9.2.1 Future Research in Population Variation....................................................................................249 
9.2.2 Future Research in Genetic Programming..................................................................................250 

APPENDICES...................................................................................................................................................252 
APPENDIX A – LIST OF FIGURES .....................................................................................................................252 
APPENDIX B – LIST OF TABLES.......................................................................................................................255 
APPENDIX C – LIST OF SYMBOLS....................................................................................................................256 
APPENDIX D – ACRONYMS AND ABBREVIATIONS...........................................................................................258 
APPENDIX E – PAPERS PUBLISHED AS A RESULT OF THIS THESIS .....................................................................261 
APPENDIX F – LIST OF SPECIAL FUNCTIONS ...................................................................................................262 
APPENDIX G – CRITICAL POINTS OF THE T-DISTRIBUTION..............................................................................263 
APPENDIX H – SUMMARY OF PARAMETERS FOR EACH PROBLEM ...................................................................264 

REFERENCES .................................................................................................................................................265 

INDEX ...............................................................................................................................................................279 
 
 
 
 
 



Population Variation in canonical GP 10

 
 
 
 
 

CHAPTER 1 

 

1 INTRODUCTION AND OVERVIEW 
 
 
 
“The wisdom of the wise and the experience of the ages are perpetuated by quotations”, Benjamin 
Disraeli. 
 
 
 
 
 
 
 
 
 
 

1.1 Introduction to Evolutionary Algorithms 
 

Problem solving, which is considered the most complex of all the intellectual functions, 

is a higher-order cognitive process that requires the control of more routine or fundamental 

skills  [99]. This intricate and complicated task of problem solving has been facilitated by the 

advent of computers. The automatic computational solution of problems has been central to 

artificial intelligence (AI), machine learning, and the broad area encompassed by what 

Turing called “machine intelligence”  [174]. In the organic world, the most complex and 

diverse organisms and species came into existence through the process of evolution. The 

human brain, the most powerful natural problem solver with some one hundred billion 

neurons and tens of thousands of other nerve cells with quadrillion (1015) synaptic 

connections, was formed through the evolutionary process. Consequently, natural and 
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biological processes have continually served as an inspiration, providing valuable sources of 

ideas and metaphors to researchers. In his 1859 paper, On the Origin of Species by Means of 

Natural Selection, Charles Darwin  [55] introduced the theory and concept of natural selection 

and the phenomenon of survival of the fittest, which governs the evolutionary adaptation of 

the biological world from the smallest virus to the most complicated mammals. The 

abundance of incredibly complex and evidently intelligent natural creatures has led scientists 

to view evolution as a powerful paradigm. Based on the Darwinian principles of natural 

selection, researchers have drawn inspiration from the molecular genetics to validate whether 

the effects proven in the carbon world could possibly also occur in the silicon world. This 

resulted in the birth of Evolutionary Computation (EC) with its four main traditional variants, 

namely Evolution Strategies (ES), Evolutionary Programming (EP), Genetic Algorithms 

(GA) and Genetic Programming (GP).  

In 1948, Turning proposed “genetical or evolutionary search” and during the 1960s and 

1970s three different implementations of the basic idea were cultivated. Fogel, Owens and 

Walsh invented Evolutionary Programming (EP)  [86] [87] and Rechenberg and Schwefel 

developed Evolution Strategies (ES)  [184] [279], while John Holland promoted his method of 

the Genetic Algorithm (GA)  [118] [119]. During the 1990s a fourth stream materialised, 

Genetic Programming (GP) championed by Koza  [170] [174]. These various dialects of EC 

are designated as Evolutionary Algorithms (EA) and are distinguished by types of structures 

or representations comprising the individuals in the population, genetic operations, selection 

procedures and a host of other items. The representation in Evolutionary Programming (EP) 

is based on real-valued vectors with the only variation operator being mutation, based on 

Gaussian perturbation. EPs have a deterministic parent selection and are evolved in the form 

of Finite State Machines (FSM). The structures in Evolution Strategies (ES) are based on 

real-valued objective variables. Similarly, ES utilise mutation, based on Gaussian 
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perturbation, but they are frequently associated with engineering continuous parameter 

optimisation problems. The representation in Genetic Algorithms (GA) is string based, being 

a string of binary digits, integer, real-valued or floating-point representations. GAs are the 

most widely known type of EA. The youngest member of Evolutionary Algorithms is 

Genetic programming (GP), with its particular representation of trees as chromosomes. 

Genetic Programming differs from the other EA disciplines in its application area. While the 

other Evolutionary Algorithms normally pertain to optimisation problems, Genetic 

Programming is related to machine learning. GP is utilised to discover systems (Figure  1.1a), 

whilst most other Evolutionary Algorithms generally seek for input to optimise the solution 

to the system (Figure  1.1b). 

 

 
 

Figure  1.1 Modelling and optimisation problems 
 
 In EA, an initial population of individuals is randomly generated. Each individual is 

measured in terms of how it performs in solving a particular problem. The Darwinian 

principle of reproduction and survival of the fittest together with the genetic operations such 

as sexual recombination are used to create new offspring population of individuals from the 

current population. The environmental pressure causes natural selection, triggering a rise in 

the fitness of the population. This process is iterated until a candidate with a desired quality 

is realised or until a previously defined computational limit is reached. To illustrate the 

workings of typical EAs, consider a one dimensional objective function to be minimised. In 
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other words, it is required to find a solution *x on a set of possible solutions S, such that 

)()( ** xfxfxx ≤⇒≠ (inequality reversed for maximisation). Three stages of the 

evolutionary search are depicted in Figure  1.2, namely the distribution of the individuals 

directly after the initialisation exhibiting random spread over the solution space, the 

individuals after some generations displaying fitness improvement due to pressure exerted by 

natural selection and finally the individuals at the end of the evolution, where most of the 

individuals are concentrated around the troughs. This is an example of a multimodal problem 

with both a local optimum and a global optimum.  

 

 
 

Figure  1.2 Population distribution – progress of an Evolutionary Algorithm 
 

It is obvious that the problem complexity increases with the dimension. For example, 

Figure  1.3 illustrates a two dimensional maximisation problem. On this landscape the height 

dimension belongs to the fitness function and the other two dimensions represent biological 

traits, where the x-y plane holds all the possible trait combinations. The pinnacles of the 

landscape correspond to a range of successful trait combinations, while the low regions 

represent less fit combinations. Such a plot is a representation of the problem’s search space. 

As it can be seen, the search space or fitness landscape can be of surprisingly complex 

topography. The process of gradually advancing the population to the peak areas, powered by 

natural selection and genetic variation, is called evolution. For more complex problems, with 

more than two parameters or variables, the situation becomes harder to visualise.  
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Figure  1.3 A complex search space of a two-dimensional maximisation problem 

 
Although the main goal is the detection of the global optimum, there is a possibility 

that the algorithm may pinpoint and get trapped in one of the local optima. The search is 

normally categorised into two distinct phases of exploration versus exploitation, which 

concentrates the search in the vicinity of a good known solution. There are tradeoffs between 

the exploration and exploitation, where too much of the former can lead to inefficient search 

and too much of the latter can lead to a tendency to focus the search too early and thereby 

losing population diversity too quickly, which can result in premature convergence. The 

balance between exploring the search space and exploiting the discovered highly fit positions 

is a recurrent theme in the theory of Evolutionary Algorithms. The increased exploitation can 

lead to faster progress of the algorithm but at the same time, it can result in greater possibility 

of failure to spot the global optimum. Figure  1.4 portrays the development of the best-so-far 

individual, where the progress is rapid during the initial generations and then flattens out 

further on in the evolution. In this plot, the run is divided into two equally long sections A 

and B. The plot can suggest that very long runs may not be that beneficial and efforts spent 

after a certain number of fitness evaluations may not result in better solution quality  [71]. 
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Figure  1.4 Progress of EA in terms of the best fitness value within population 

 
Evolutionary Algorithms are generally considered to be robust techniques of almost 

universal application. This is due to the fact that they can be implemented on a wide variety 

of problems with minimal adaptation, but are likely to be much less efficient than the highly 

tailored problem-specific algorithms. This observation is evident in Figure  1.5, where EAs 

show a roughly evenly good performance for a wide range of problems, but are inferior to the 

problem-tailored algorithms that are specifically designed for the problem of interest  [1] [71]. 

 

 
Figure  1.5 Comparison of robustness of EAs with more traditional practices 

Progress in 2nd half B 

Progress in 1st half A 

GenerationFi
tn

es
s o

f b
es

t i
nd

iv
id

ua
l 

Spectrum of applicable problems 

Ef
fic

ie
nc

y 
of

 th
e 

M
et

ho
d 

EA enriched with knowledge 

Problem-tailored method 

General purpose EA  

Random search 



Population Variation in canonical GP 16

1.2 Components of Evolutionary Algorithms 
 

In this section some of the main components of Evolutionary Algorithms are briefly 
described.  
 

1.2.1 Definition of Individuals 
 

In the discipline of molecular genetics, each individual is a dual entity: its phenotypic 

and genotypic properties. An individual’s genotype encodes its phenotype. Hence, the 

genotype contains all the necessary information to build the particular phenotype. This 

concept of duality is also applied in the field of evolutionary algorithms. The process of 

mapping phenotypes from a phenotype space P onto the genotype space G using a defined 

rule F (F:P→G), is called representation. It should be noted that the phenotype space P can 

be very different to the genotype space G. For instance, the representation typically used in 

Genetic Algorithms is fixed length binary characters. For example, in an integer optimisation 

problem the phenotype 90 is encoded as a binary string of 1011010. The whole evolutionary 

search takes place in the genotype space G. This means that the final solution obtained by the 

evolutionary process is required to be decoded back into its phenotype space P.  

1.2.2 Population 
 

Classic adaptive and machine learning paradigms generally analyse only a single 

solution point. For example, in Neural Networks (NN) a single vector of weights in the 

weight space undergoes adaptation, or in Hill Climbing a single point in the search space and 

in Simulated Annealing a single domain specific structure in the search space undergoes 

adaptation. However, in scatter search, ant systems, swarm intelligence and evolutionary 

algorithms etc, a population or a set of solution points undergo adaptation simultaneously. 

The population, which is a collection of a number of individuals from the genotype space G, 
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forms the unit of evolution. The first population is randomly generated using a stochastic 

process, commonly known as initialisation.  

1.2.3 Fitness Function 
 

The fitness function is an expression of the environmental requirements and an 

estimation of solution quality.  The fitness function basically assigns a scalar fitness value or 

a quality measure q to the genotype ψ (q(ψ), ψ∈G) by means of some well-defined evaluative 

procedure according to how well the individual attempts to solve the particular problem at 

hand. The search process, which is driven by the variation and selection operators, is highly 

dependent on the fitness function. The fitness function is the driving force of evolutionary 

algorithms. 

1.2.4 Selection Mechanism 
 

The individuals within the current population are selected based on their fitness to 

participate either for mating or replacement, forming the new individuals for the next 

generation. The role of survivor selection or replacement is to select individuals, favouring 

those with higher quality, from the current population and copy it unaltered into the new 

population. The role of mating or parent selection is to allow better individuals to become 

parents. The selected candidates undergo variation creating offspring for the new population. 

1.2.5 Variation Operators 
 

The variation operators are ultimately used in steering the evolutionary process into 

new unexposed territories within the search space. The role of the variation operators is to 

generate new candidate solutions. Variation operators are commonly divided based on their 

arity.  

Definition 1.1 The arity is the number of arguments or inputs that a function can 
take. 
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The most well known unary variation operator is the mutation operator applied to one 

genotype, producing slightly modified mutant. It randomly modifies the genetic material of 

one parent, creating a new offspring or child. The most widely used binary variation operator 

is the recombination or crossover operator, which merges the content of two parent 

genotypes into either one or two offspring genotypes.  

1.2.6 Termination 
 

The evolutionary process is stopped when specific termination criteria are met. For 

problems with known fitness level or a known optimum O (O = max{q(ψ) | ψ∈G}), the 

stopping condition is generally reaching this level within a precision of 0>ε . In other 

instances, the process can be stopped when a certain condition X is reached. This condition 

can be the maximum allowable CPU time or the total number of fitness evaluations reaching 

a certain predefined limit. 

1.3 Overview of Tree-based Genetic Programming 
 

The genetic programming paradigm applies the Darwinian principle of evolution to 

hierarchical computer programs of dynamically varying shapes and sizes. Figure  1.6 shows a 

simplified contour plot of a possible solution space. The programs are represented as dots 

(square, triangular or parallelogram) representing individuals at different stages of evolution, 

e.g. initial individuals shown as square, generation 10 as triangle and generation 40 as 

parallelogram. Darker areas represent fitter landscapes. GP solves problems by searching the 

space of all possible computer programs, composed of functions and terminals suitable for 

the problem domain. The functions may be standard programming functions, arithmetic 

operators or mathematical functions, logical functions or any domain specific functions. The 

population of thousands of computer programs are genetically bred using the Darwinian 

principle of natural selection and genetic operations. An initial population of computer 
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programs is randomly generated. Each individual computer program within this population is 

then measured using a predefined problem specific fitness function. For example, if the 

problem at hand involves creating a randomiser, the fitness of the programs can be assessed 

via entropy, with higher entropy indicating a superior randomiser. The fitness measure 

provides an indication of how well a computer program performs in solving problems in a 

given problem environment.   

 

Figure  1.6 Simplified contour plot of a solution space 
 

Each individual program is typically tested with a number of fitness cases 

representing different environments or situations. For instance, multiple fitness cases can 

represent different initial conditions or a sampling of values of an independent variable. The 

fitness of the individual program can be measured in terms of the difference between the 

output produced by the program and the correct answer to the problem. This class of error 

measure ρ can be based on the Minkowski norm defined in a Euclidean space, as defined by 

the general equation (1.1). 
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yj is the jth dimensional element of vector yr   
B  is the vector dimension or number of fitness cases 
r is a positive integer in the range of [1,∞). 
 

The error measure ρ is the average absolute error for 1=r , the mean square error for 

2=r  and the maximum absolute error rydrr
/1)],([lim rr

ρ∞→  for ∞→r . The most 

commonly used error measures are the Mean Square Error (MSE) and the average absolute 

error. New offspring of computer programs are created from the current population using the 

Darwinian principle of survival and reproduction of the fittest and the genetic operations. The 

actual selection of computer programs for reproduction or recombination is probabilistic but 

favours those with high fitness measure. The offspring programs contain building blocks or 

subroutines from their parents. Selected arbitrarily chosen parts of effective programs are 

randomly recombined to possibly produce new fitter computer programs. The new population 

of individual computer programs replaces the old existing population. The fitness of each of 

these new individuals is then measured and this process is repeated over many generations 

until a suitable candidate program evolves or some termination criterion is met. The process 

of the classical genetic programming paradigm is summarised in a flowchart as depicted in 

Figure  1.7 with its simplified pictorial representation of the GP cycle in Figure  1.8. The index 

i refers to an individual in the population of size M with variable GEN indicating the current 

generation number. The best individual which has appeared in any generation (best-so-far 

individual) is designated as the result of the GP process. It should be noted that the structures, 

which undergo adaptation, are active and not passive encodings of the solution to the 

problem. Hence, they are capable of being executed in their current form.  
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Figure  1.7 Flowchart of classical genetic programming paradigm 
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Figure  1.8 The simplified GP cycle 
  

It should be noted that research in the fields of machine learning, artificial 

intelligence etc. concentrate on methods that are correct, consistent, justifiable and 

deterministic. Although these principles are valuable and play significant roles in most 

branches of sciences, mathematics and engineering forming an integral part of our thinking, 

they are not necessarily applicable to genetic programming.   For example, consider a GP 

solving the problem applicable to the general first order differential equation of the form 

)()(' xyxy ζφ =+ , where y represents the dependant variable and )(xφ  and )(xζ represent 

two different continuous functions of the independent variable x. It is quite possible that the 

GP may produce a result indicated by (1.2), where C is the constant of integration. 
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Although the last term of (1.2) may be quite small and negligible from a real-life 

engineering problem point of view, it would simply be not acceptable for most scientists or 

engineers. Therefore, the above solution is not a correct solution to the first order DE. The 
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extra right side term in (1.2) has no justification and there is no logical sequence of reasoning 

for this term based on the mathematics of differential equations. In addition, GP promotes 

contradictory and inconsistent solutions. A new run of GP on the above problem can yield a 

completely different solution. The genetic programming paradigm is a highly stochastic 

process. In fact, its probabilistic nature is one of its key factors in solving problems with the 

notion of “anything can happen and nothing is guaranteed”  [170]. Although the above stated 

principles are violated in GP, during the period of its infancy Koza showed that GP can be 

successfully applied to a wide variety of problems from many disciplines, such as the 

artificial ant problem, symbolic regression problem, Boolean multiplexer problem, Boolean 

parity function, discovery of trigonometric identities, symbolic integration and 

differentiation, sequence induction, numeric roots of equations, programmatic image 

compression, wall following robot, box moving robot, randomisers, the Boolean Symmetry 

problem, the lawnmower problem, finding an impulse response function, the obstacle 

avoiding robot, the minesweeper problem, discovery of detectors for letter recognition, 

predictions of transmembrane domains in proteins and prediction of omega loops in  proteins 

to name but a few  [170] [174]. More recently, Koza  [182] [184] has shown real-life 

applications of GP in performing automated synthesis of controllers, automated synthesis of 

analog electrical circuits such as Butterworth or Chebychev filters, amplifiers or MOSFET 

circuits, antennas, genetic networks and metabolic pathways. It should be noted that GP’s 

problem representation is a superset of the representations of all of the other machine 

learning (ML) paradigms  [21]. More importantly, GP can deliver human competitive 

machine intelligence  [184] and can be used as an automated invention machine. Specifically, 

it was argued  [184] that GP had duplicated the functionality of fifteen previously patented 

20th century inventions, six previously patented 21st century inventions and has produced two 
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instances of patentable new inventions. For a more detailed description of genetic 

programming the reader is referred to Chapter 3. 
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1.4 A Brief Literature Survey in GP 
 

This subsection summarises some of the previous research conducted in the field of 

Genetic Programming. The reader, not familiar with Genetic Algorithms (GA) and/or 

Genetic Programming (GP), is encouraged to read the next two chapters on GA and GP 

before reading this section.  

Research within the Genetic Programming community has been divided into three 

main areas. One area of GP research has concentrated on the applications of GP and 

extending its innovative applications to real-world problems. Another area of focus has been 

on enhancing our understanding of fundamental aspects of genetic programming and 

examining how and why it works. A further area of research has given attention to 

discovering new techniques, which could increase the power and performance of the genetic 

programming approach. Although some parts of this subsection briefly discuss the various 

techniques that have been introduced to improve the performance of GP, a whole chapter is 

devoted to this topic in Chapter 5, where an attempt has been made to categorise all the 

suggested techniques.  

A wide range of applications of genetic programming have been studied. The 

problems themselves could be separated into artificial problems and real-world or scientific 

problems such as engineering and medical specific related problems. Applications on the 

artificial problems have been widespread from applications in games  [69] to simulated 

problems such as the sort problem  [159]. Genetic Programming was used to solve the 

artificial ant problem together with the pursuer and evader game  [168]. In  [171], GP was 

applied to two well-known benchmark problems from the field of neural networks (NN), 

namely the truck backer problem and the inter-twined spirals problem, which is a challenging 

classification problem. GP was employed to teach a computer to develop strategies for the 
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ancient Egyptian board-game Senet  [84]. GP has been applied in various branches of 

engineering and sciences from neural networks  [1]  [56]  [169]  [333], image processing and 

pattern recognition  [51]  [124]  [172]  [267], biomedical science  [60]  [100]  [102]  [181]  [281] to 

control engineering  [135]  [144]  [220] and robotics  [42]  [110]  [198]  [199]  [221]  [225]  [229] 

 [314]. In the biomedical application field such as molecular and biochemical genetics and 

biomedical engineering, GP was applied to pattern recognition analysis from the spectra of 

human tumour biopsy extracts  [222]. The detection of epileptic events was investigated in 

 [219] , whereas  [175]  [176] applied GP to recognise a given protein segment as being a 

transmembrane domain or non-transmembrane domain area of the protein. Circuit design  [1] 

has been another focus in the applications of GP. In  [66]  [111], the synthesis of digital logic 

expressions was illustrated while  [178] engaged in electronic circuit synthesis, designing a 

low-pass filter, an amplifier and an asymmetric band-pass filter. Multiple circuits such as the 

time-optimal controller circuit, the temperature-sensing circuit and the voltage reference 

circuit were designed using GP  [179]. Koza et al.  [180] designed analog circuits that perform 

mathematical functions such as cube and square root, for which no circuit has been found in 

the published literature. GP has made some penetration into the area of image processing. In 

 [1], rules for optical character recognition were evolved and upgraded. In  [302], GP was 

applied to learning algorithms that investigate face images, which are coordinated into a face 

recognition system. There have been many applications in traditional engineering such as 

electrical engineering. In  [173], the impulse response function for a linear time-invariant 

system was derived while Sharman et al.  [282] evolved the structure and parameters of 

adaptive digital signal processing (DSP) algorithms. Automatic generation of neural network 

architecture was carried out in  [310]. GP has made some inroads into robotics. A complete 

robot system including its controller and physical structure were synthesised and designed 

 [200]. Uchibe et al.  [309] discussed how multiple robots could engage in cooperative 
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behaviour using co-evolutionary processes, while the synthesis of the design of both the 

topology and parameter values for controllers was automated through the use of GP  [183]. 

Tunstel et al.  [307] examined three soft computing paradigms, namely GP, GA and neural 

networks, for automated learning in robotic systems. Kurashige et al.   [187] adopted GP as a 

learning method to construct the motion planning system for a six legged locomotion robot 

while  [248] reported on evolving bipedal locomotion using GP. There have been many other 

instances and other disciplines where GP has been applied, such as application of GP to 

information retrieval systems  [185], prediction of financial data  [133]  [147], software 

engineering  [204]  [318], classification tasks  [306]  [322] and navigation tasks  [24], to name 

but a few. 

Most of the research that has been carried out in genetic programming has looked into 

applying the genetic programming paradigm to problems. The majority of papers and books 

published have studied or illustrated applications to various disciplines. Incredibly little 

research has been devoted to the theory on the fundamental aspects of genetic programming. 

Also relatively little research has focused on performance improvement of Genetic 

Programming. 

Although the amount of research on the fundamental aspects of GP and examining 

how and why it works is limited, the following efforts could be briefly summarised. Schema 

theorems are traditionally used to explain how genetic algorithms (GA) and, more recently, 

genetic programming (GP) work  [264]. Conventional wisdom in GP has suggested what 

makes a problem difficult is a problem’s domain  [52]. The fitness landscape such as a rugged 

or deceptive fitness landscape could make a problem GP-Hard  [52]. There are but a few 

theoretical works that address problem difficulty in GP at all. The first work to do so 

appeared in  [170], where a semi-empirical formula was provided that estimated the number 

of trials needed to solve a problem with a specified success probability. The number of 
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independent runs R(z) with a success probability of z required to solve a specific problem by 

generation i  is defined by (1.3).  

⎥
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−
=
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P(M,i) is the cumulative probability of satisfying the success predicate of a problem 

for GP for generations between generation 0 and generation i. The number of runs required to 

yield a success with a probability of 0.99 (z = 99%) is depicted in Figure  1.9. Kinnear  [160] 

suggested that the analysis of the structure of the fitness landscape might allow relating the 

difficulty of the problem to the structure of the landscape. 

 

Figure  1.9 Number of runs required as a function of cumulative probability for z = 99% 
 

The tendency of tree sizes to grow rapidly during GP is well known, causing 

excessive use of CPU time and memory. It was reported in  [59] that tree size increases 

progressively as a function of the number of generations. When tree size starts to grow 

rapidly, a GP run almost always stagnates  [27] and it is useful to take some measures against 

this. With multi-objective optimisation algorithms it is possible to optimise towards several 
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objectives. There are only a few studies which perform multi-objective optimisation in the 

context of GP  [27].  

Definition 1.2 The depth of a node is the minimum number of nodes that is required 
to be traversed from the root node of the tree to the concerned node.  

 

 A limit on tree depth or number of nodes is normally manually set. However, setting 

a reasonable limit is difficult  [27] and it is recommended to introduce program size as a 

second independent objective besides the program functionality. If the limit is too low, GP 

might not find a solution and if the limit is too high, evolution may slow down. In standard 

GP Fi is the fitness of individual i defined as the error Ei of an individual's output compared 

to the correct solution, i.e.  Fi = Ei. A multi-objective GP was introduced in  [27], reducing 

bloat by penalizing larger programs, adding a size dependant term to the fitness.  If Ni is the 

number of edges of an individual and "α" is the parsimony factor, then: 

iii NEF ×+= α       (1.4) 
 

However, parsimony pressure can drive the entire population to a minimal possible 

size and possibly lower the probability of finding good solutions. Another alternative is to 

optimise the functionality first then follow by optimizing the size. The population is divided 

into two groups. Group one contains individuals that have not reached an error smaller than ε, 

which is the maximum acceptable error. The fitness is calculated according to the error 

without any pressure on size, i.e. Fi = Ei + 1, if Ei > ε. Group two individuals are already 

within the acceptable error (Ei < ε) and hence their fitness will incorporate the size factor, in 

other words, 
i

i N
F 11−= . In this way the fitness of an individual with a large tree size is 

nearly one while the fitness of a small tree size is much closer to zero. This will not hinder 

GP from finding good solutions as no pressure is applied unless the individual has reached 

the aspired performance.  
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Many researches have described and discussed the idea of introns  [13]  [134]. Several 

researchers have hypothesised that the growth of code during GP and the creation of non-

functional code are both important contributors to the production of effective programs. 

Langdon  [190] described that bloat is not specific to Genetic Programming. It is inherent in 

search techniques in any discrete variable length representation using simple static evaluation 

functions, provided there is no length bias. Igel et al.  [134] described intron as excess size of 

a language expression when compared with a smaller equivalent expression (see Figure  1.10) 

and argued that an intron is a code that can be removed from a program without affecting its 

behaviour or without affecting the fitness of GP. For example, some introns are dead code, as 

they are never executed, or a code that does nothing. 

 
 

Figure  1.10 Illustration of Intron 
 

Some researchers think that programs containing non-coding segments are protected 

from destructive effects of crossover and these segments promote the grouping of building 

blocks  [22]  [28]  [242]  [243]. Other authors  [6]  [109]  [115]  [209]  [303] argue that useless 

code produces negative effects, exhausting memory space in individuals and altering the 

search process. Banzhaf  [22] discussed two hypotheses, namely “fitness causes bloat” and 

“neutral code is protective”. Neutral code constitutes a major percentage of individuals. He 

argued that a general consensus has emerged in the GP community that the two mentioned 
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phenomena of code growth and neutral code appearance are strongly related and that at this 

point it seems too early to draw conclusions as to the relative strength of their effects. A new 

implementation of introns was developed in  [38], named evolutive introns (EIs). EIs had no 

effect on the depth of the individuals, and favoured the existence and growth of NOP (No 

Operations) chains. NOP chains appeared at any point in the trees, when chosen for 

crossover, which produced good offspring. This method consisted of adapting the probability 

of selection of every node in the tree after each application of the crossover operator, so that 

good building blocks were harder to disrupt. To avoid bloating, NOP instructions will not 

appear explicitly but implicitly; by associating each node in the tree with an integer (weight) 

(refer to Figure  1.11). 

 
Figure  1.11 Tree with Evolutive Introns-NOP not coded, each node is associated with a 

weight 
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On the other hand, other authors  [6] point out that the use of introns can degrade the 

search performance of GP because of the existence of useless code portions that have no 

effect in fitness calculation, and in some cases occupy all the available space for the tree 

representation of the individuals. Luke  [209] argued that tree bloat is unnecessary. Hirasawa 

 [115] blamed bloat for the difficulty to search an optimum solution in the GP search space of 

solutions. The searching efficiency of GP is not so high in some cases because the search 

space becomes enormous due to its bloat. Many researches have attempted to control and 

fight the bloat phenomenon. In fact, Terrio and Heywood  [303] introduced directing 

crossover for reduction of bloat, where the fitness of each individual is measured and 

recorded at each individual node. The node whose fitness exceeds all the others is tagged as 

being the "index" node used as crossover points. In other words, directed crossover always 

takes place at the index node. Soule et al.  [288] argued that programs will grow indefinitely, 

mostly via the increases in the amount of non-functional code, regardless of whether or not 

the growth acts to improve the program solution. It was argued that looking at biological 

evolutionary processes was also not very enlightening. In humans, roughly 80-90% of DNA 

(deoxyribonucleic acid) does not code for functional proteins, although some of this DNA 

does have a structural function  [288]. Similar percentages hold for most other higher 

organisms.  Despite the prevalence of non-functional code, removing this code at every 

generation does not halt the program’s growth. It is believed that much of program’s growth 

is not caused by pressure to improve the solution, but instead is an innate part of the GP 

process. Some research has attempted to pinpoint which parameters could impact on the 

performance of GP. Kinnear  [159] highlighted that the number of individuals M in a 

population or the actual fitness cases can impact on the success of the GP. Handley  [102] 

indicated that if M is too small, then GP could reduce to a random search while if M is too 

large, computation is wasted. He also argued that there is no theory to guide the choice of 
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population size. Other researchers have looked into new ways and methodologies to improve 

GP performance. Methods using a subroutine such as ADF (Automatic Defined Functions) or 

MA (Module acquisition) have been developed, for an efficient way to search in GP. ADF 

were examined in-depth in Koza  [174]. Koza et al.  [173] demonstrated the value of ADFs in 

solving an impulse response function. Iba et al.  [127] stated that traditional GP blindly 

combines sub-trees by crossover, which can disrupt beneficial building blocks. They believed 

that ADF can help to maintain useful building blocks. They stated that trees can grow 

exponentially large and suggested a method of pruning redundant trees. Crossover is 

destructive and methods such as ADF and MA have the advantage that a partial structure of a 

solution can be preserved from a destructive crossover  [150]. The effects on performance of 

the primary GP operations for modification of structures have also been examined. Many 

researchers have attempted to highlight their importance. Crossover swaps randomly selected 

sub-trees between parents. Often the selection of a sub-tree is biased against the selection of a 

leaf. Koza  [170] suggested a leaf selection frequency/probability of 0.1. As about 50% of the 

sub-trees are leaf nodes, it was determined  [170] that it was important to bias selection of 

crossover points away from leaves and towards internal nodes. “This distribution promotes 

the recombination of larger structures whereas a uniform probability distribution over all 

points would do an inordinate amount of mere swapping of terminals from tree to tree in a 

manner more akin to point mutation than to recombination of small structures or building 

blocks”. While the need to bias sub-tree crossover away from selecting leaves seems 

plausible it is not empirically validated. Some experiments have suggested that 0.1 may not 

be optimal for many problems  [14]. Angeline  [14] investigated the sensitivity of genetic 

programs that use sub-tree crossover to various values for the leaf selection frequency and 

showed that the optimal leaf selection frequency during the crossover is problem dependant. 

Most generally an effective method for determining appropriate leaf selection frequency may 
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be a simple pseudo-adaptive random process. Beasley  [23] argued that crossover is more 

important than mutation for rapidly exploring the search space and should be given a higher 

probability to alter genes. The effects of mutation, permutation, editing and encapsulation 

were studied in  [170] and it was shown that there is no substantial difference in performance 

between the probability of success with and without these secondary genetic operations for 

the 6-Multiplexer problem. In fact, the mutation operator was not used at all in  [174].  

Hansen  [104] found that crossover had a negative effect on the fitness of the 

offspring. The worth of a code fragment depends on the context within which it is executed, 

i.e. most often location, size, or function, or some combination thereof. Hansen argued that 

the insertion into a different program at a random location may destroy this context. 

Consequently, several researchers had proposed context preserving crossovers, with the aim 

of increasing the likelihood of moving the code fragment to a syntactically similar part of the 

recipient program in order to preserve its context and worth. Non-homologous crossover 

occurs when instruction blocks are exchanged between two evolved programs with no 

reference to the size and location of the two sets of instruction blocks. Hansen  [104] 

proposed a homologous crossover attempting to mimic natural evolution by exchanging sets 

of contiguous instruction blocks between the two evolved programs. The groups of 

contiguous instruction blocks were selected such that the sets from each parent program were 

the same length and were taken from the same position in both of the two parent evolved 

programs. With uniform crossover, copies of the parent trees are recursively traversed 

starting from the root nodes to identify a common region. Nodes in the common parts are 

swapped with uniform probability. In summary, homologous crossover is a method of 

recombination between equal length program fragments in the same positions in each parent. 

Korenaga  [162] looked at algorithms to produce shorter programs and avoid premature 

convergence. Their algorithm included an elastic artificial selection, which selected the best 
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and worst individuals and then stored them for predetermined generations. They considered 

two populations, namely the evolution population and storage population. To keep the variety 

of individuals, the individuals were reintroduced by replacing the same number of worst 

individuals at a reintroduction rate defined as the ratio of storage population to evolution 

population. They believed that in this way they could store useful schemata which are not 

necessary at this time but might be effective after some generations. Some researchers have 

looked into alternative representations to improve performance.  

The genetic programming literature has consistently cited the importance of 

maintaining diversity as being crucial in avoiding premature convergence toward local 

optima as noted in several diversity studies (see  [90]). Typical evolutionary algorithms 

contain a phase of exploration followed by exploitation. However, the type and amount of 

diversity required at different evolutionary times remains rather unclear  [34].  

The above is a very brief summary of some of the work carried out within the GP 

community. It does not in any way document all the efforts that have been conducted within 

this discipline.  It should however be noted that most of the research has been carried out in 

applying the GP paradigm to applications, rather than looking at ways to improve GP 

performance and understanding the fundamentals of GP or developing a theory for GP. 

Chapter 5 summarises in-depth the various techniques proposed in the literature to improve 

the performance of GP and categorises these suggested techniques.  

1.5 Scope of Work 
 

It was indicated in  [170] that not all the runs in GP are successful. In fact, it was 

pointed out that more will result in failure than success, e.g. in some examples a success of 

16% was reported. Therefore, it was recommended in  [174] to investigate ways for 

enhancing the performance of GP.  A thorough analysis of some parameters that impact on 
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the performance of genetic programming was conducted in  [174], but further work was 

strongly encouraged: “The question is not definitely answered here; however, the results of 

these limited experiments may suggest further work (experimental and theoretical) that might 

lead to general conclusion”. It was shown that the addition of extraneous variables to the 

terminal set dramatically degraded the performance of the cubic polynomial symbolic 

regression problem. Similarly extraneous functions in the function set degraded performance, 

except for the 6-Multiplexer problem, where there was improvement to performance when 

the IF function was added to the set. The effect of one extraneous turning function was 

reported as negligible for the artificial ant problem. No substantial difference in performance 

was observed when extraneous ephermal random floating-point constants were introduced for 

the quadratic regression problem. Table  1.1 summarises these findings. 

Parameters Problem Performance Effect 
Extraneous Variables Cubic Regression Dramatically degrades 

Extraneous Random Constants Quadratic Regression No change 
Extraneous Functions 6-Multiplexer Problem Improves Performance 
Extraneous Functions Artificial Ant Problem Negligible – No change 

Table  1.1 Extraneous variables, functions and constants and their impact 
 

The success of the three different methods of FULL, GROW and RAMPed half-and-

half were also investigated for the quadratic regression problem, 6-Multiplexer problem, 

linear equation problem with two unknowns and the artificial ant with the Santa Fe Trail. As 

illustrated in the Table  1.2 the RAMPed half-and-half was shown to be the best observed for 

these problems. 

Problem Probability of success 
 Full Grow Ramped half-and-half 

Quadratic Regression Problem 3% 17% 23% 
6-Multiplexer Problem 42% 53% 66% 

Artificial Ant – Santa Fe Trail 14% 50% 46% 
Linear equations with two unknowns 6% 37% 53% 

Table  1.2 Comparison between full, grow and ramped half-and-half 
 

It was also argued that there are a large number of operational questions surrounding 

the use of GP for which no definitive answer is known  [170].  
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As it was mentioned in the previous subsection, most of the research within the GP 

community has concentrated its efforts on applying the GP paradigm to applications, rather 

than looking at ways to improve its performance. The majority of papers and books published 

have studied or illustrated applications to various disciplines. Little research has focused on 

performance improvement of Genetic Programming. In this thesis a comprehensive survey is 

firstly conducted on the current schemes proposed to improve the performance of GP with all 

these improvements methodically categorised. More importantly, it is believed that 

population variation can significantly enhance the performance of GP. In addition to the 

assessment and taxonomy of proposed schemes, the main aim of this thesis was to carry out 

an investigation of possible impacts on population variation with reference to performance of 

the genetic programming paradigm. A new static population variation scheme (PV) is 

proposed, whereby the size of the population is varied according to a predetermined schedule 

during the execution of the Genetic Programming system with the aim of reducing the 

computational effort with respect to that of Standard Genetic Programming. Within this new 

static scheme the initial population size is made to be different from the initial size of the 

Standard Genetic Programming such that the worst case computational effort is never greater 

than that of the Standard Genetic Programming. Various static schemes for altering 

population size under this proposal are investigated using a comprehensive range of standard 

problems to determine whether the nature of the "population variation", i.e. the way the 

population is varied during the search, has any significant impact on Genetic Programming 

performance. It is shown that these population variation schemes do have the capacity to 

provide solutions at a lower computational cost compared with the Standard Genetic 

Programming. Finally, three innovations for dynamically varying the population size during 

the run of the Genetic Programming system are proposed. These are related to what is called 

Dynamic Population Variation (DPV), where the size of the population is dynamically varied 
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using a heuristic feedback mechanism during the execution of the Genetic Programming with 

the aim of reducing the computational effort. The efficacy of these innovations is examined 

using the same comprehensive range of standard representative problems. It is shown that 

these new ideas do have the capacity to provide solutions at a lower computational cost 

compared with standard genetic programming and previously reported algorithms.  

1.6 Chapter Overview 
 

In this chapter the field of evolutionary computing was briefly introduced. The main 

components of the evolutionary algorithm were presented. An overview of genetic 

programming was discussed and a brief literature survey was given. This chapter concludes 

with the scope of work for this thesis. Since GP is an extension of the conventional GA, in 

the next chapter the genetic algorithm, the most widely known type of evolutionary algorithm 

initially conceived by Holland, is reviewed. It also covers the theoretical aspects of GA. 

Chapter three embarks on an in-depth discussion of the theory of genetic programming. 

Chapter four introduces some of the theoretical aspects of genetic programming. Chapter five 

presents a survey of all the previous work conducted in GP research to improve its 

performance and categorises these techniques. Population variation is introduced in chapter 

six with the exploration and investigation of dynamic population variation in chapter seven. 

The analysis and evaluation of the proposed schemes is conducted in chapter eight and 

finally the conclusion and future research directions are offered in chapter nine. 
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CHAPTER 2 

 

2 INTRODUCTION TO GENETIC 
ALGORITHMS  

 
 
 
“A tree as big as you can reach starts with a small seed, a thousand-mile journey starts with one 
small step”, Lao-tse. 
 
 
 
 
 
 
 
 
 
 

2.1 Introductory Example 
 

A very simple example is presented here to introduce the basic concepts of the genetic 

algorithms. It should be noted that this example will incorporate the methodologies or 

operations of the GA in a very simplistic fashion to only convey the working concepts of the 

GA. This example contains an optimisation problem in finding the best business strategy for 

the fabrication of a particular solid state device that will offer better performance at a lower 

cost per unit. The business strategy involves making three decisions, namely the material to 
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be used, the structure or the specific spatial arrangement of atoms required within the 

selected material and the fabrication technique used. These are further defined as follows: 

• Material: Should an elemental semiconductor such as silicon (Si) be used or a 

compound such as cadmium telluride (CdTe)? 

• Structure: Should the selected material be amorphous or crystalline? 

• Fabrication Technique: Should an abrupt junction be formed by using a carrier gas 

of silicon tetrachloride (SiCl4) and hydrogen (H) with dopant impurity atoms of 

diborane (B2H6) in an epitaxial growth process or graded junction be produced using 

thermal diffusion of phosphine (PH3) over the surface of the semiconductor wafer? 

The goal is to determine the best combination of these three choices that will yield a high 

performing electronic device at the lowest possible cost. The first step to solve this problem 

entails the identification of a suitable representation scheme. All the possible business 

strategies of these three decision variables can be successfully represented using a 3-bit 

binary encoding. Table  2.1 shows a random initial population of four genotypes, the 

corresponding phenotypes and their respective fitness values. 

String no i Material Structure Fabrication 

Technique 

Binary 

representation 

Fitness f(Xi) 

1 CdTe crystalline epitaxial growth 011 3 

2 CdTe amorphous thermal diffusion 000 0 

3 Si amorphous epitaxial growth 101 5 

4 CdTe crystalline thermal diffusion 010 2 

Table  2.1 Representation scheme for the fabrication of a particular solid state device 
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Each individual in the population is tested using a payoff or fitness function for each 

generation to ascertain its fitness. Table  2.1 shows the fitness for the initial random 

generation (g = 0, where g is the generation number) of four individuals (M = 4, where M is 

the population size). The reader will probably notice that for simplicity the fitness of each 

string has been made equal to the decimal equivalent of the binary chromosome. The genetic 

algorithm is a highly parallel mathematical algorithm which uses the fitness values associated 

with each individual (typically fixed-length binary character strings) to transform individuals 

from the current set (called a population) to a new population of offspring objects using 

operations based on the Darwinian principle of reproduction and survival of the fittest and 

naturally occurring genetic operations, such as crossover (sexual recombination) and 

mutation. Based on fitness, some of the better candidates are chosen probabilistically to seed 

the next generation for applying recombination and reproduction, forming the mating pool. 

The probability of each individual P(Xi) { }4,3,2,1∈i can for example be calculated using a 

useful analogy of the roulette wheel, where each individual will occupy a sector of an area 

proportional to its fitness within the wheel. Table  2.2 shows the mating pool and next 

generation (generation 1) individuals. 
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 Generation 0  Generation 1 

i String 

Xi 

Fitnes

s f(Xi) 

P(Xi) Mating 

Pool 

Operation String 

Xi 

Fitness 

f(Xi) 

1 011 3 0.3 011 Mutation 010 2 

2 000 0 0 101 Reproduction 101 5 

3 101 5 0.5 101 Crossover 110 6 

4 010 2 0.2 010 Crossover 001 1 

Total 10  14 

Worst 0  1 

Average 2.5  3.5 

Best 5  6 

Table  2.2 One possible mating pool and outcome of applying genetic operations  
to create generation 1 

The environmental pressure causes natural selection triggering a rise in the fitness of 

the population. This can be seen in Table  2.2 as the best-of-generation individual has a 

fitness of 5 and the worst-of-generation individual has a fitness of 0 for the initial generation, 

whereas their individual fitnesses have improved to 6 and 1 respectively for g = 1. In 

addition, the sum of fitness values of all individuals has now improved from 10 to 14 and the 

average fitness of the population also shows improvement. The variation operators of 

mutation and recombination will be discussed in detail in subsequent sections. The new 

candidates or offspring will compete again based on their fitness and this process is iterated 

until a candidate with sufficient quality is formed or a previously set computational limit is 

reached. Table  2.3 shows an iteration of this process, creating new individuals in generation 

2. 
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 Generation 1  Generation 2 

i String 

Xi 

Fitnes

s f(Xi) 

P(Xi) Mating 

Pool 

Operation String 

Xi 

Fitness 

f(Xi) 

1 010 2 0.14 110 Mutation 111 7 

2 101 5 0.36 101 Reproduction 101 5 

3 110 6 0.43 110 Crossover 111 7 

4 001 1 0.07 001 Crossover 000 0 

Total 14  19 

Worst 1  0 

Average 3.5  4.75 

Best 6  7 

Table  2.3 One possible outcome of applying genetic operators to create generation 2 
 

This example illustrates how the genetic algorithm created populations with higher 

average fitness and improved individuals without knowing anything about the problem 

domain or the fitness measure. In Table  2.2, mutation is seen to have caused a negative effect 

in fitness whereas in Table  2.3 it shows it to have caused a positive change in fitness. 

Moreover, the fourth individual has regressed in the second generation and has the worst 

possible fitness of zero. These are indicative of the random processes that exist in GA. The 

best individual for this problem is the genotype 111 which corresponds to a crystalline silicon 

wafer using the epitaxial growth fabrication process to yield the highest profit. Of course, a 

typical run of a GA may not successfully terminate at its second generation but could 

possibly run for hundreds or thousands of generations and sometimes not even find the 

desired solution.  
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2.2 Representation of Individuals 
 

One of the first steps in the conventional genetic algorithm is to determine the 

representation scheme. This involves the definition and mapping of genotypes to phenotypes. 

In nature the chromosomes are character strings in nature’s base-4 alphabet, the four 

nucleotide bases that appear along the length of the DNA molecule adenine (A), cytosine (C), 

guanine (G) and thymine (T). In GA however, the mathematical objects or genes that 

undergo evolution are fixed-length character strings. When the values being represented as 

genes belong to a discrete distribution, the most suitable representation scheme is the integer 

representation for ordinal attributes such as integers (e.g. {0,1,2,3}) or the cardinal attributes 

(e.g. {MOSFET, CMOS, JFET, Bi-Polar}). When the genes come from a continuous 

distribution, the most sensible way to represent the candidate is real-valued strings consisting 

of k genes of floating-point numbers forming a vector kxx ,,1 K  with ℜ∈ix . However, the 

most widely used representation scheme in GA is the binary representation. In this instance, 

it may be required to decide on how long the bit-string should be or whether the encoding 

allows a valid representation of all possible solutions. In the previous section, a 3-bit binary 

string was used for the problem of fabrication of the solid state device. In the following 

subsections, the binary representation is only considered and discussed. 

2.3 Variation Operators 

The main aim of the variation operators is to fill the gene pool with “fresh blood”.  

Two of the most common variation operators are discussed here, namely the mutation and 

recombination operators. Mutation, a unary operator, is the generic name given to operators, 

which use only one parent to create one child. This involves the application of some kind of 

randomised unbiased change to the genotype. The most common mutation operator for binary 

representation involves bit flipping. The parent is chosen probabilistically based on fitness 
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and then the mutation point chosen at random is inverted to create the new offspring. Figure 

 2.1 illustrates how the specific individual (from Table  2.2) in the problem of fabrication of 

the solid state device undergoes mutation to create the new offspring. 

 

Figure  2.1 Bitwise mutation for binary encoding 
 

From the biological analogy of meiosis, crossover or recombination usually uses two 

parents to create two children (a binary operator). The most common reproduction operator is 

the N-point crossover. N random crossover points are chosen in the range [1,L-1], where L is 

the length of the encoding, using a uniform probability distribution. The representation is 

broken into N+1 segments of contiguous genes and alternative segments are taken from two 

parents to form the offspring. The crossover operation from Table  2.2 in the problem of 

fabrication of the solid state device is the one-point crossover operation. Two parents are 

chosen probabilistically based on fitness and then an interstitial point is picked at random 

splitting both parents at this point and forming two fragments and remainders. As it can be 

seen in Figure  2.2, the offspring are created by exchanging the tails. In this example, there 

are L-1=2 interstitial locations between the positions of each string and interstitial location 1 

is selected as the crossover point. 

Parent 

0 1 1

- - 1

Mutation Point chosen 

Offspring 

0 1 0
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Figure  2.2 One-point crossover for binary encoding 
 

2.4 Some Theoretical Aspects of GA 
 

An exhaustive search strategy is generally non-intelligent and/or non-adaptive. 

Genetic Algorithm however uses the information, which has been learned about the 

environment, to control the future direction of the search. It works in a domain-independent 

way on fixed-length character strings of populations. The total number of points (ntotal) in the 

search space is given by equation 2.1, where K is the alphabet cardinality and L is the length 

of the character string.  

   L
total Kn =        (2.1) 

The total number of possible strings for the problem of fabrication of the solid state 

device can be represented geometrically as per Figure  2.3, where each corner of the cube 

represents one of the possible points (23=8).   

Parent 1 

1 0 1

Parent 2 

0 1 0

Fragment 1 

1 - -

Fragment 2 

0 - -

Remainder 1 

- 0 1

Remainder 2 

- 1 0

Offspring 1 

1 1 0

Offspring 2 

0 0 1



Population Variation in canonical GP 47

000 001

101

111
110

010
011

100

 

Figure  2.3 Search space for the fabrication of the solid state device problem 
 

A schema H (plural schemata) is a hyper-plane in the search space. Each schema is a 

string over an extended alphabet of K+1, consisting of the original alphabet and an asterisk 

the “don’t-care” symbol. For the example of the binary alphabets the templates can then be 

represented by the ternary alphabet, namely{ },*1,0 . The schema H is a common 

representation of these binary alphabets or building blocks, which express a set of points 

from the search space of a problem, having specific similarities. Some examples of schemata 

are 101, ***, 1*0 and **1. The Schema Specificity O(H) as defined by (2.2) is the number of 

positions in the schema that are not defined by a meta-symbol. The number of meta-symbols 

present within the schema is described by m.  

mLHO −=)(       (2.2) 

The total number of individuals (NI) that a schemata contains is defined by (2.3) and 

the number of schemata (NSO(H)) of specificity O(H) is defined by (2.4). 

[ ])(HOLKNI −=       (2.3) 
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The number of crossover points is described by the defining length δ(H), which is the 

distance between the outermost specific non-* symbols. For example for the schema 

H=1**0*1*0, O(H)=4 and the defining length δ(H)=7 or δ(*1*0*)=2, δ(1101*)=3, 

δ(11001)=4 and  δ(******)=0. The total number of schemata Stotal is described by (2.5). For 

the problem of fabrication of the solid state device, there exist 27 schemata. Figure  2.4, 

shows 23 of these schemata, where *01 represents 001 and 101. 

  ( )L
total KS 1+=       (2.5) 
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Figure  2.4 Examples of schemata with specificity of one, two and three 
 

2.5 Schema Theorem 
 

Since Holland’s pioneering research in standard genetic algorithm using fitness 

proportionate selection, 1-point crossover and bitwise mutation, the schemata concept has 

dominated the theoretical analysis of genetic algorithms. The search space can be divided 

into subspaces, called schemata. Each schema, with its associated fitness, is viewed as a 

competing explanation. The schemata assemble all the points in the search space that have 

certain characteristics in common. Schema theorems provide the necessary means to study 

how and why the individuals in the population move from one subspace to another. Let 

f(H,g) be the average fitness of a schema H at generation g. For example, f(H,0) denotes the 



Population Variation in canonical GP 49

average fitness for the schema H at generation 0. Specifically, f(H,g) is calculated as the 

average of the observed fitness values of the individual strings in the population which 

belong to the schema H as illustrated by (2.6), where m(H,g) is the number of occurrences of 

schema H at generation g. It should be noted that m(H,g) is a function of generation g. In the 

initial generation m(H,0) may be zero but increase in later generation, e.g. m(H,19) may be 

nine. A schema theorem provides a mathematical model of why and how m(H,g) varies from 

one generation to the next. 
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j
j

∑
∈

=      (2.6) 

The fitness ratio FR of a given schema H is calculated as the ratio of the average 

fitness of a schema H to the average fitness )(gf of the population at generation g. 

  
)(

),(),(
gf

gHfgHFR =       (2.7) 

The probability of disruption due to crossover εc for a genotype of length L of a 

schema H is described by (2.8). εc is small when δ(H) is small, indicating that a schema with 

relatively short defining length generally appears in the future generations with exponentially 

increasing frequency, as indicated by the schemata theorem (2.10). 

1
)(

−
=

L
H

c
δε        (2.8) 

 
The probability of disruption due to mutation εm for a genotype of length L of a 

schema H is defined by (2.9). It should be noted that the simplification can be obtained after 

the expansion using the Taylor series (Maclaurin series) and approximation by ignoring the 

high-order terms in pm. εm is small when O(H) is small. 

( ) )(11 )( HOpp m
HO

mm −≈−=ε     (2.9) 
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The schema theorem states that for a GA using the Darwinian operation of fitness-

proportionate reproduction and the genetic operations of crossover and mutation, the 

expected number m(H,g+1) of occurrences of every schema H in the next generation is 

approximately given by (2.10). 

( )( )mcgHm
gf

gHfgHm εε −−≥+ 11),(
)(

),()1,(   (2.10) 

 
A schema would be propagated into subsequent generations at an exponentially 

increasing rate, when the fitness ratio FR over several generations of that particular schema H 

is by at least a steady amount above unity. If εc and εm  are small, the allocation of succeeding 

trials is approximately optimal. A schema H with short defining length and reasonably few 

defined positions is a building block, which will be proliferated from generation to 

generation. The genetic algorithm favours the processing of such schemata.  
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CHAPTER 3 

 

3 TREE-BASED GENETIC 
PROGRAMMING  

 
 
 
“Give me a lever long enough, and a fulcrum strong enough, and single-handed I can move the 
world”, Archimedes. 
 
 
 
 
 
 
 
 
 
 

3.1 Introduction to LISP 
 

This section provides a brief outline of the LISP (LISt Programming) programming 

language. The common LISP dialect  [293] was initially proposed for the genetic 

programming paradigm due to its suitability when compared with the other high-level 

programming languages such as C, JAVA, PASCAL, FORTRAN etc. It was believed that 

evolving program structures based on JAVA or C++ may not be as straightforward as the 

LISP programming language. General hierarchical computer programs with varying size and 

shapes can be expressed using LISP. LISP programs can be easily manipulated as the 

functions and variables in LISP are defined in the same manner.  

There exist two main types of entities in LISP, namely atoms and lists. Atoms 

comprise of constants and variables. Some examples of constants are the Euler’s number (the 

base of the natural logarithm) e, π or an integer 23. An example of a variable would be the 
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magnetic flux density B, viscosity η or simply the variable TIME. A list is an ordered set of 

items enclosed by parentheses. Typically, a list is a combination of operators and atoms. Two 

examples of lists are shown in Figure  3.1.  

 
Figure  3.1 Two examples of a list 

 

The common LISP statements are expressed as symbolic expressions (S-expression). 

An S-expression can be a list or an atom in LISP. Each S-expression can be classified into 

functions or operations and terminals or arguments. Each function will require argument(s), 

and has the structure of a list. Each terminal is a single atom (variable or constant atom) that 

can be evaluated immediately. The execution of the LISP S-expression follows the Polish 

notation, commonly known as prefix notation. If the arguments in the S-expressions are lists 

rather than atoms, the execution is in a recursive depth-first manner starting from left in the 

nested parentheses. Figure  3.2 shows a complex composite function in LISP illustrating this 

idea.  

 
Figure  3.2 An example of execution of composite functions in LISP  

 

Any LISP expression can be graphically presented as a rooted point-labelled tree with 

ordered branches, commonly known as a parse tree. The S-expression in Figure  3.2 is shown 
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as a parse tree in Figure  3.3. As it can be seen from Figure  3.3, there are four leaf nodes 

(external points) labelled with terminal (variable atom) x and eight internal points labelled 

with functions +, ×, sin, cos and ∂/∂x. Unless the parse tree is a single atom, the root node of 

all parse trees is always an operation or function. All the leaf nodes are always an atom. Each 

node within the parse tree can have as many children nodes as required. In this example, 

some of the functions have one or two children and the terminals have obviously no children. 

sin

x

sin

x

×

cos

x

∂/∂x

×

sin

x

+

Root Node

Leaf Nodes  

Figure  3.3 Parse tree structure of a composite function 
 

3.2 Structures Undergoing Adaptation 
 

As discussed in the previous chapter, Genetic Algorithms (GA) typically apply 

biologically inspired evolutionary operators to fixed length binary characters. Genetic 

programming (GP) extends this by increasing the complexity of the structures that undergo 

adaptation to broad hierarchical computer programs with dynamically varying forms and 

sizes. In the classical GP, the structures are typically comprised of the set of Nfunc functions 

from the function set { }NfuncfffF ,,, 21 L=  and the set of Nterm terminals from the terminal set 

{ }NtermaaaT ,,, 21 L=  forming the combined set TFC ∪= .  
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Definition 3.1 The terminal set consists of all the inputs and the constants supplied 
to the GP algorithm together with the zero argument functions with 
side-effects executed by GP. 

 
Definition 3.2 The function set consists of all the operators, statements and functions 

supplied to the GP algorithm. 
 
Definition 3.3 The combined set is the union of the terminal set and the function set, 

i.e. TFC ∪= . 
 

The functions and terminals are specific for the problem at hand. The functions in the 

function set may include mathematical functions, conditional operators, iterations, recursions 

or any domain specific function and the terminals are variable atoms or constant atoms. For 

example, for a sequential logic problem of designing a JK flip-flop, the combined set may 

be { }QKJNOTORNORNANDANDTFC ,,,,,,,=∪= , whereas the problem of finding the 

solution to the transverse magnetic waves in rectangular waveguides may have a combined 

set of { }nmbayxTFC ,,,,,,ln,cos,sin,sinh,cosh, π=∪= . Structures are typically represented as 

a rooted, point-labelled tree with ordered branches. For example, the solution to the JK flip-

flop problem produced by the GP process is shown in Figure  3.4 and expressed in disjunctive 

normal form (DNF) by the following LISP S-expression ( OR ( AND J ( NOT ( NOT ( NOT ( 

Q ) ) ) ) ) ( AND ( NOT ( K ) ) ( NOT ( NOT ( Q ) ) ) ) ). 
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Figure  3.4 Parse tree of JK flip-flop as rooted point-labelled tree with ordered branches 
 
 

The space of all the possible LISP S-expressions composed of elements from the 

combined set for the specific problem forms the search space for GP. The nine internal points 

of the tree are labelled with functions OR, AND, AND, NOT, NOT, NOT, NOT, NOT and 

NOT. The four external points or leaves of the tree are labelled with terminals, the Boolean 

variable atoms J, K, Q and Q. 

Each node in the parse tree can contain as many children nodes as required 

contributing to different parse tree shapes. Moreover, the shape and size of a generated parse 

tree is also dependent on the depth of the tree. Due to computer memory limitations, a size 

restriction or limit is typically placed on the depth of the tree. The depth of a parse is 

however constrained by (3.1)  [46], assuming that n ≥1 and t≥2: 

⎟
⎠
⎞

⎜
⎝
⎛ +

≤
2

1log ndepth t       (3.1) 
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The minimum degree t refers to the minimum bound on the number of children 

contained within each node and n represents the number of children nodes linked to a single 

parent node. 

3.2.1 Closure Property 

It is desired that the terminal set and the function set in the genetic programming 

satisfy the closure property. The closure property requires that all the functions Ff ∈  can 

accept as their arguments any terminals Ta∈ and any data type returned by any 

function Ff ∈ . For example, for the arithmetic operation such as division by zero or 

mathematical function such as logarithm of non-positive numbers, the closure property is not 

satisfied and hence a protected division operator % or protected logarithm PLOG will need to 

be defined. If the closure property is not met, the individuals will need to be discarded if they 

do not evaluate to an acceptable result. 
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3.2.2 Sufficiency Property 

It is incumbent that some composition of terminals Ta∈ and functions Ff ∈  will 

yield a solution to the problem. This is known as the sufficiency property, where it is 

required to identify functions and terminals with sufficient power to solve a particular 

problem. Determining the repertoire of primitive functions and terminals is considered one of 

the most important preparatory steps in GP, but it is common to virtually every problem in 

science and other machine learning paradigms. 

3.3 Initialisation 
 

The initial population is created by randomly generating individual S-expression of 

rooted, point-labelled trees with ordered branches. Using a uniform random probability 

distribution, the selection of the root of the tree is restricted to a function Ff ∈ , as it is 

desired to produce hierarchical initial structures rather than a degenerate structure comprised 

of a single terminal. For every point within the tree with a function Ff ∈ , there will be a(fi) 

lines radiating out from the respective node, where a(fi) returns the arity of fi (or number of 

arguments fi takes). For each of these radiated lines an element is randomly selected from 

TFC ∪= using a uniform random probability distribution to be the endpoint of that radiating 

line. If a function is chosen, then the above steps are recursively iterated. However, if a 

terminal is selected for that point, that point becomes the endpoint for the tree and the 

generating process is consequently terminated. There exist three main generative process 

implementation methods which are discussed in the following subsections. 

3.3.1 FULL Method 

The FULL method restricts the selection of nodes n at depths less than the maximum 

depth ( max)( Dnd < ) to a function Ff ∈  and nodes at the maximum depth to a terminal Ta∈ . 

The depth of a node d(n) is the length or number of branches connecting the specific node to 
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the root node and the depth of a tree is defined as the length of the longest non-backtracking 

node from the root to the endpoint. The maximum depth of any rooted point-labelled tree 

with ordered branches is denoted by Dmax. The FULL method can be summarised as per (3.2). 

max

max

)(..,
)(..,

Dndtsn
Dndtsn

Ta
Ff

n
=∀
<∀

⎩
⎨
⎧

∈
∈

=      (3.2) 

The FULL method produces a full parse tree, where the tree is fully balanced and the 

left and right hand side of the root node has the same amount of nodes and the same depth. 

3.3.2 GROW Method 

As opposed to the FULL method, the GROW method generates random trees that are 

variably shaped. Each node n at depths less than the maximum depth ( max)( Dnd < ) is 

randomly selected from the combined set TFC ∪= , whereas nodes at maximum depth 

( max)( Dnd = ) are restricted to a terminal Ta∈ . The trees produced are not balanced and are 

variably different in shape and sizes.  

3.3.3 Ramped Half-and-Half Method 

The Ramped Half-and-Half method is the most popular method in GP and is a 

mixture of the previous two methods. It incorporates both the GROW method and FULL 

method by generating equal numbers of trees from each of the methods and thereby 

maximising the variety of trees in the population. The depth of the tree ranging from 2 to 

Dmax is used as a parameter to create trees. To illustrate, if the initial maximum tree size is 

limited to 9, then 12.5% of the population will have a depth of two, 12.5% will have a depth 

of three and so on. For each value of depth 50% of the trees are generated using the FULL 

Method and 50% using the GROW method. This means that for example 6.25% of trees have 

a depth of three and are generated using the FULL Method. There is a chance that random 

trees may be identical, wasting computational resources and undesirably reducing genetic 
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diversity. It is desirable to remove these duplicates in the initial random population but it is 

not necessary. It should be noted that in the classical genetic programming checking for 

uniqueness is not performed.  

3.4 Fitness 
 

In nature, the driving force of Darwinian natural selection is fitness. Similarly, in the 

genetic programming paradigm fitness measures the performance of an individual with 

respect to solving a particular problem and thereby determines the fate of that individual and 

whether the individual will survive and propagate into the next generation. It can be 

measured implicitly or explicitly. Most commonly, fitness is measured by creating an explicit 

fitness measure for each individual in the population. In other words, each parse tree is 

assigned a scalar value by using a well defined explicit evaluative procedure.  

3.4.1 Raw Fitness 

Raw fitness is a measure of performance in the natural terminology of the problem 

itself. For example, in the artificial ant problem the raw fitness is the number of food pellets 

eaten by the ant. The more pellets the ant eats the better. For many problems, a single fitness 

value does not accurately describe the performance of an individual. In these instances, more 

fitness cases are needed for the generalisation of the problem domain. For example, for the 

cart centring problem, twenty different initial conditions of position and velocity are chosen 

for the problem  [170]. The fitness is then the sum of time over the twenty fitness cases to 

centre the cart. The shorter the time, the better the algorithm is to centre the cart. The most 

common definition of raw fitness r(i,g) of an individual i at generation g is given by (3.3).  

∑
=

−=
fcN

j
jCgiSgir

1
)(),(),(       (3.3) 

S(i,g) is the value returned by the S-expression, C(j) is the correct value for the fitness 

case j and Nfc is the total number of fitness cases. 
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3.4.2 Standardised Fitness 

As it could be seen from the examples of the previous subsection, the best value of 

raw fitness may be large or small depending on the problem, as raw fitness is stated in the 

natural terminology of the problem. The standardised fitness s(i,g) expresses raw fitness 

r(i,g) in such a way that a lower numerical value is always a better value. The standardised 

fitness is governed by (3.4), where rmax is the maximum possible value of raw fitness for a 

given problem. 

   s(i,g)= r(i,g)  , for minimisation problems   (3.4) 

   s(i,g)= rmax-r(i,g) , for maximisation problems 

 

3.4.3 Adjusted Fitness 

The adjusted fitness translates the possible lower and upper limits of the fitness value 

to 0 and 1. The higher the adjusted fitness a(i,g), the better the individual in the population. 

The adjusted fitness is computed as follows. 

),(1
1),(

gis
gia

+
=        (3.5) 

The main benefit of this fitness measure is that it exaggerates the importance of small 

differences between standardised fitness values, as they approach the value zero. This way a 

greater emphasis is placed between a good individual and a very good one. 
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3.4.4 Normalised Fitness 

The normalised fitness n(i,g) is computed as per (3.6), where M is the population size. 
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As the name implies, this fitness measure is normalised and therefore the sum of all 

the normalised fitness values is one and its range is between 0 and 1. In addition, the higher 

the n(i,g), the better the individual in the population. 

3.5 Selection Schemes 
 

The selection scheme can play a significant role within GP and may ultimately 

determine the diversity of the population. All selection schemes have a common objective, 

where they mimic Darwinian natural selection and pick individuals based on their fitness 

value. 

3.5.1 Parent Selection versus Survivor Selection 

Parent selection  [170] is a probabilistic process where individuals with higher quality 

are selected to become parents of the next generation. Selected individuals undergo variation 

to produce offspring. Survivor selection  [170] is the process where individuals with higher 

fitness are favoured to participate in the next generation replacing an old number of 

individuals from the previous generation. The survivor selection and parent selection 

mechanisms are responsible for enforcing quality improvements.  

3.5.2 Fitness Proportionate Selection 

Fitness proportionate selection (FPS) introduced in  [119] selects individuals Xg(i) at 

generation g based on their fitness f(Xg) according to the probability P(Xi) defined by (3.7). 
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Although one of the merits of this selection scheme is its simplicity and it has widely 

been used in the traditional GP, there are some shortcomings associated with FPS. 

Individuals with highest fitness can be heavily selected leading to premature convergence. In 

addition, when the fitness values of the individuals are closely clustered, the selection 

pressure virtually vanishes leading to almost uniform random selection. 

3.5.3 Ranking Selection 

The ranking selection addresses the drawbacks of FPS by maintaining a constant 

selection pressure. Individuals are sorted on the basis of fitness and selection probabilities, 

which are allocated to them according to their rank. There are various probability allocation 

schemes such as linear and exponential. In the Linear Rank selection, the rank of individuals 

ranges from 1 to M, i.e. [1,M], where the best individual receives a rank of M and the worst 

individual a rank of 1. After the allocation of the ranks, the selection processes follows FPS 

as per (3.7). The amount of selection pressure is limited for linear mapping. The Exponential 

Ranking selection provides the means to place  more emphasis on the selection of individuals 

with higher fitness values. The probability of selection for the exponential ranking scheme is 

governed by (3.8), where σ is the normalisation factor ensuring that 1)(
1
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The main advantage of rank selection is that it exploits the small differences between 

individuals, maintaining population diversity and avoiding premature convergence. 
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3.5.4 Tournament Selection 

For the ranking selection and FPS, the fitness values of entire population is required. 

In some instances obtaining this knowledge becomes a formidable task, where it becomes 

highly time consuming to determine the fitness of all individuals in the population. This can 

be seen when the population is distributed on a parallel system or when the population size is 

very large. There are instances where the determining universal fitness is almost impossible 

such as in evolving applications for game playing. Tournament selection can surmount these 

difficulties as it does not require a global knowledge of the population. The tournament 

selection selects k number of individuals from the population M and the best amongst the k 

individuals is selected for propagation (deterministic tournaments). To increase the chances 

of selection of members with the above-average fitness, the tournament size k should be 

increased. Binary tournaments (k=2) are most broadly used in GP. 

3.5.5 Greedy Over-selection 

In the greedy over-selection, individuals with higher fitness are greedily overselected 

as opposed to the standard FPS. It is believed that complex problems require a larger 

population size M  [170].  Greedy over-selection is typically used for problems with large M. 

This scheme is implemented by ranking the individuals based on fitness and then dividing 

them into two groups, the fittest individuals (group I) containing the top b% and the less fit 

individuals (group II) containing (100- b)% of the individuals. 80% of the selection operation 

are from group I in proportion to normalised fitness and 20% from group II . The values of b 

depend on population size M and are determined empirically. The “rule of thumb” values of b 

are documented in  [71] and shown in Table  3.1 below. 
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M b 
1000 32% 
2000 16% 
4000 8% 
8000 4% 

Table  3.1 Proportion of subpopulation in the fitter group 
 

3.5.6 Age-based Replacement 

Age-based replacement  [71], mainly a surviver selection scheme, takes into account 

the age of the population rather than its fitness. This strategy implements a first-in-first-out 

(FIFO) queue, where individuals within a certain threshold (age) are the only candidates 

suitable for selection and individuals beyond this threshold are simply discarded. 

3.5.7 Elitism 

Elitism  [170] prevents the loss of the fittest individual within the population by 

ensuring that the current fittest individual always survives and is kept in the population. Thus 

the fitness of the best individual is an increasing function. 

3.5.8 Genitor 

The genitor scheme  [170] replaces the worst k members of the population with new 

individuals. Although the mean population fitness can rapidly increase when this scheme is 

chosen, it can at the same time lead to premature convergence. 
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3.6 Evolutionary Operators 
 

The evolutionary operators in GP are reproduction and the variation operators. The 

role of the variation operators is to produce new offspring from the current individuals. The 

main evolutionary operators in GP are discussed in this section. 

3.6.1 Reproduction 

The reproduction operator, a primary operation, is an asexual operator which takes 

one parental S-expression and creates only one offspring S-expression. This operation is 

conducted in two steps in which an individual is selected and then copied without any 

alteration into the new population. The number of individuals subjected to this operation is 

controlled by the probability of reproduction Pr. 

3.6.2 Crossover 

Another primary operation is the sexual recombination or crossover, where it 

produces new offspring by swapping genetic material between the selected parents, as 

depicted in Figure  3.5. Crossover is the predominant search operator in genetic programming.  

The crossover operation is highly stochastic. Crossover is a binary operator, where it selects 

two S-expressions probabilistically and produces two new S-expressions. One point in each 

parent is randomly selected to become the crossover points. In selecting the crossover point, 

a higher probability Pip is given to the internal (function) points of the tree. This distribution 

promotes the recombination of much larger structures. The crossover fragment of each parent 

is itself a rooted subtree, with its root being the crossover point. The offspring is created in a 

symmetric manner, where the crossover fragment of the first parent is deleted and the 

crossover point of the other parent is inserted at the crossover point of the first parent. As it is 

required for all functions to comply with the closure property and entire subtrees are 

exchanged, this genetic operation creates syntactically legal LISP S-expressions. The 
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maximum depth of a tree during the evolution Devolution limits the maximum permissible size 

of a tree. If the crossover operation results in offspring of impermissible size, the crossover 

operation is aborted and one of its parents is arbitrarily selected to be reproduced.  
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Figure  3.5 Illustration of recombination - Parental programs, crossover fragments and the 
resulting offspring 

 
 

3.6.3 Mutation 

Mutation, a unary operator, introduces random changes in the individual. In the 

conventional genetic algorithm, there is a possibility that an allele (particular symbol) at a 

specific position on a chromosome string to disappear and become extinct. In such algorithms 

the mutation operation plays a significant role and is therefore the primary operator. In 

genetic programming however, mutation is considered as a secondary operator, as it is 

particularly rare for an element to disappear in GP. Moreover, the crossover operation 



Population Variation in canonical GP 67

becomes a point mutation, when the crossover points of the two parents are endpoints of their 

respective trees. Mutation, an asexual operator, is implemented by selecting one parental S-

expression probabilistically and then randomly selecting a node within this tree. The 

mutation point can be an internal or an external point. The mutation operation removes the 

selected mutation point as well as the entire sub-tree lying below the mutation point and then 

appends a randomly generated sub-tree at that point. Note that the depth of the child tree can 

exceed that of its parent.  The maximum permissible tree size is limited by Devolution . Figure 

 3.6 illustrates the mutation operation. 

 

Figure  3.6 Illustration of mutation 
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3.6.4 Permutation 

In genetic algorithms, the inversion operation reorders alleles exploring the genetic 

linkage between combinations of alleles, with the hope of bringing certain alleles closer 

together to increase performance. Permutation, an asexual operation, selects an individual 

randomly and then selects an internal point within the LISP S-expression at random. For a 

function with k arguments, a permutation is randomly selected from the set of k factorial (k!) 

possible permutations. Permutation has no immediate effect, if the function is commutative. 

Permutation is considered a secondary operation and is not generally used in GP. Figure  3.7 

illustrates an example of permutation. 

 

Figure  3.7 Illustration of permutation 

3.6.5 Editing 

Editing, an asexual operation, selects one parental S-expression and produces one 

more parsimonious offspring S-expression. The editing operation uses a selected set of 

domain independent and domain specific editing rules to simplify the S-expression. Figure 

 3.8 shows examples of editing in Boolean domain. The last example shows the application of 

De Morgan’s law to the symbolic S-expression. 

 

Figure  3.8 Editing – Examples in Boolean Domain 

(AND X X)  → X 
(OR X X)  → X 
(AND (NOT X) (NOT Y)) →  (NOT (OR X Y)) 
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A frequency parameter fed controls the amount of the editing operation, where the 

editing operation is applied to all generations when fed=1 and to no generations when fed=0. 

The editing operation is sometimes considered to be very time consuming and a secondary 

operation. Editing is not extensively used in GP, as the question of whether breeding for 

parsimony will degrade performance due to prematurely reducing variety or will be 

beneficial still remains unclear. 

3.6.6 Encapsulation 

Encapsulation, an asexual operation, selects one parental S-expression and produces 

one offspring S-expression. After selecting an individual tree randomly, it selects an internal 

point at random and removes the sub-tree underneath this selected point. It then defines a 

new encapsulated function, which has no arguments and is named E0, E1, E2, etc. and allows 

references to the deleted sub-tree. The function set is augmented to include these newly 

defined functions. The newly defined functions can now for example be used during the 

mutation operation. The motivation behind this operation is that potential building blocks can 

be created for future generations that cannot be subjected to the disruptive effects of 

crossover, as this new building block is now considered to be an indivisible single atom. This 

operation is not generally used in GP. 

3.7 Control Parameters 
 

The parameters that control the execution of the classic genetic programming 

paradigm are discussed in this section. Two of the major numerical parameters are the 

population size M and the maximum number of generations G in one run. There exist nine 

minor numerical parameters controlling the GP process, namely the probability of crossover 

Pc, the probability of reproduction Pr, the probability of mutation Pm, the probability of 

permutation Pp, the probability of selecting an internal point as a crossover point Pip, the 
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maximum initial tree depth for the initial population Dinitial, the maximum depth of a tree 

during the evolution Devolution, the frequency of editing fed, the probability of encapsulation 

Pen. Some of the qualitative parameters that affect GP are the generative method for the 

initial random population and the different selection methods used.  

3.8 Preparatory Steps 
 

Computer programs are entities that perform computations on received inputs to 

produce some form of outputs (Figure  3.9). The computations could involve basic arithmetic, 

conditional operations, iterations, recursions, storage of information in memory, building 

reusable groups into subroutines or passing and receiving information to/from subroutines.  

 

Figure  3.9 A Computer program 
 

A system that automatically creates computer programs must possess a number of 

attributes and capabilities. For the production of automatic computer programs it is necessary 

to start off with a high-level statement citing all the requirements. The system is required to 

produce an entity that can be executed on a computer producing results which satisfactorily 

solve the problem. There exist five major preparatory steps in the standard genetic 

programming (SGP). These preparatory steps form the communication of the high-level 

statement of the problem to the GP system and are outlined below and summarised in Figure 

 3.10.   

 
Computer Program Inputs Outputs 

Subroutines Loops Recursions Internal Storage . . .
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The five major preparatory steps are: 

i. Determine the set of terminals that are needed to solve the given problem. 

ii. Identify the set of primitive functions. 

iii. Formulate and establish the fitness measure. 

iv. Set the values for the control parameters. 

v. Define the termination criterion and the method for the result designation for 

the run. 

The first two steps determine the ingredients that will make up the space of all 

computer programs that may solve or approximately solve the given problem. The third step 

is the chief mechanism for conveying a high-level statement of the problem requirements. 

The last two steps are administrative.  

 

Figure  3.10 Five preparatory steps for SGP 
 

GP is reminiscent of nature in which it is a never ending process. For practical reasons, it 

is therefore required to define possible criteria that when satisfied will result in termination of 

GP. Typically, the generational predicate or some problem specific success predicate is 

required to be met before the run is terminated. In general, the best individual (the best-so-far 

individual) is designated as the result of the GP process. 
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CHAPTER 4 

 

4 AN INTRODUCTION TO THE THEORY 
OF GENETIC PROGRAMMING  

 
 
 
“One may say the eternal mystery of the world is its comprehensibility”, Albert Einstein. 
 
 
 
 
 
 
 
 
 
 

4.1 Some brief notes 
 

In this chapter, some of the theoretical basics in the field of genetic programming are 

reviewed. In addition, some of the challenges that the GP paradigm faces are briefly 

discussed. This chapter provides the necessary foundations for the next chapter, which 

discusses the innovations that have been proposed to remedy the problems that GP 

encounters and to improve GP. 
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4.1.1 The Turing Machine 

The Turing Machine TM  [308] is a simple, inefficient computer that can simulate the 

behaviour of any other computer using a finite set of states. A set of state transition rules 

define specific actions that the TM should perform depending on the input it reads and its 

current state. It should be noted that it is different to a Von Neumann Machine, which is a 

computer where the program and the data used by that program reside in the same storage. 

Any programming language that can emulate the behaviour of the TM is said to be Turing 

complete.  

4.1.2 Convergence 

Convergence can be generally interpreted as the point at which the population contains a 

considerable number of similar individuals. In this instance, the algorithm is either not 

progressing satisfactorily or is approaching a local optimum (premature convergence). At 

times, convergence has been interpreted as the point at which the algorithm is approaching 

the global or optimal solution. In the former, convergence could be considered to be a serious 

problem or weakness as it could be expected that after repeated cycles of the evolutionary 

process uniformity may arise sooner or later. Maintaining diversity may be considered a 

possible remedy to this problem. 

4.1.3 No Free Lunch Theorem (NFL) 

The No Free Lunch Theorem (NFL)  [317] states that no search algorithm is superior to 

any other algorithm on average across all possible problems. For example, GA may perform 

better than random search for certain problems, whereas random search may outperform GA 

for other different problems. The erroneous conclusion should not be made from this that 

there is no point in designing better algorithms or improving algorithms. We are not typically 

interested in solving all possible problems but rather a certain class of problems that are 
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suitable for the evolutionary algorithms to tackle. The broad implication of the NFL in 

regards to performance improvement of the algorithms is that the modifications may only be 

appropriate for certain form of representations or the modifications may provide improved 

performance for a specific class of problems. This would mean that the stated improvements 

are always accompanied with certain assumptions and limitations.  

4.2 The Crossover Operator 
 

Any tree or sub-tree within the population can be nominated as a building block. 

Individuals that contain good building blocks have improved fitness values. Therefore, these 

individuals have a higher probability of selection. Consequently, good building blocks are 

likely to increase and spread as they are swapped among individuals. The controversy about 

the effectiveness of crossover relates to whether crossover disrupts or preserves good 

schemata. It should be noted that most of the theoretical analysis of the crossover operator 

depend on this balance between disruption and preservation of schemata. 

4.2.1 A Gedanken Experiment 

If the dark nodes (nodes 10-12) in the Figure  4.1 represent a good building block and the 

crossover is randomly distributed across the 18 nodes (excluding the root node), the 

probability that the good building block is disrupted is 2/18 ≈ 11%. However, if the nodes 6 

to 14 represent a good building block this probability is increased to approximately 44%. 

Now if it is assumed that all the highlighted nodes represent a good building block, the 

probability that the good building block is disrupted is 13/18 ≈ 72%. 
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Figure  4.1 Demonstrating the destructive effects of crossover 
 

 As it can be seen from the above experiment, as the building block grows larger and 

larger it becomes more fragile, because it becomes more prone to being broken by the GP 

crossover operator. In fact, if it is assumed that the building block in the above figure is 

almost perfect and all that is needed is to discard the white nodes, which is e.g. replaced with 

a terminal node by the crossover operator, now under this scenario the probability of 

disruption becomes 13/14 ≈ 93%. It should also be noted that a good building block which 

has not been disrupted by crossover would still need to be inserted into an individual where 

its effect is still upheld. This means that the insertion would be context dependant. It has been 

shown in the literature that crossover has a crushing negative effect on the fitness of the 

children relative to their parents. It should be mentioned that this is in strong contrast to the 

biological crossover.  In addition, it is believed that the destructive effect of crossover is the 

main culprit as the cause of the bloat effect in GP. 

4.3 GP Introns 
 

An intron is a feature of the genotype that does not affect the fitness of the individual. 

The theoretical evidence suggests that introns emerge in response to the destructive effects of 
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genetic operators. It should be noted that it is not argued that destructive operators are always 

bad or that it is always necessary to produce children that have higher fitness than their 

parents. Such a suggestion would reduce the GP paradigm to a simple hill climbing.  

At the end of the run, individuals are close to their best performance. At this time it is 

very hard for individuals to improve their fitness. Consequently, their strategy for survival 

will change. They attempt to protect themselves from the destructive variation operators by 

introducing introns within them at an exponential rate, leading to the phenomenon of bloat. 

This explosive growth of introns leads to neutral crossover. At this point, the individuals are 

simply exchanging introns.  

4.3.1 Effective Fitness 

Definition 4.1 The absolute length or absolute complexity of a program is the total 
size of the program. 

Definition 4.2 The effective length or effective complexity of a program is the 
length of the active parts of the code within the program that affects 
the fitness of the individual, which excludes any introns. 

Definition 4.3 The probability of destructive crossover is the probability that a 
crossover in an active part of a program leads to a worse fitness for the 
individual. By definition the probability of destructive crossover of an 
absolute intron is zero. 

 

The effective fitness is related to the chance that variation operators will affect the 

fitness of the parent’s offspring. The average proportion Pi(g+1) of any individual i in the 

next generation when using fitness proportionate selection is given by:  
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, where 

 e
iC  is the effective complexity of program i and a

iC its absolute complexity, 

 pc is the probability of crossover and fi is the fitness of the individual i, 

 )(gf is the average fitness of the population at generation g, 
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 d
ip is the probability of destructive crossover. 

This equation implies that the proportion of a program in the next generation equates 

to the proportion of the same individual under the selection operator minus the proportion of 

these programs disrupted by the crossover operator. It should be noted that this is a 

conservative measure as it does not cater for the scenario where the individual i may be 

recreated as a result of the crossover operator.  The effective fitness of a parent tree measures 

how many offspring of that parent can be selected for reproduction in generation g+1 and is 

given by: 
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The effective fitness can increase by either reducing the effective complexity or by 

increasing the absolute complexity. Whilst there are arguments that introns are beneficial 

 [22]  [28]  [242]  [243], at the same time there are arguments that introns lead to poor 

performance  [6]  [109]  [115]  [209]  [303]. It should be noted that this field is very young and 

more study is required before any conclusive statements can be made. It is believed that the 

phenomenon of bloat (the exponential growth of introns) is not desirable, as no significant 

improvements can be made and the effective growth has ended, resulting in the stagnation of 

the run. Although introns produce large programs, they may encourage parsimony in the 

effective solution. This observation can be made from (4.2), as when e
iC  and a

iC  are equal 

(no introns) the influence of destructive crossover is at its maximum but when there are 

introns any reduction in e
iC  increases the effective fitness. In addition, introns may protect 

useful genes against crossover in the early stages of the evolution, attracting crossover and 

facilitating the exchange of good functional blocks.  
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4.4 GP Schemata and Schema Theorems 
 

Schemata and schema theorems are frequently used to describe why genetic algorithms 

work. A schema theorem explains how schemata, which are similarity templates representing 

groups of chromosomes, propagate from one generation to the next under the effects of 

evolutionary processes. The definition of a schema for GP is much less straightforward than 

for GAs. The complexity of transferring the schema theorem from GA to GP is due to its 

variable length representation and the movement of genetic material in the genome from one 

location to another in GP. Several alternative definitions of GP schemata have been proposed 

in the literature. A schema is defined as a similarity template composed of one or multiple 

trees or fragments of trees. It should be noted that none of the existing formulations of a GP 

schema theorem can predict with any certainty that good schemata will propagate during a 

GP run. In the next three subsections, schemata are interpreted as components within the 

program tree which can propagate through the population. They model how the number of 

instances of such components varies over every generation. In the remaining subsections, 

schemata are interpreted as subsets of the search space and they model how the number of 

individuals in such subsets varies over every generation. The first five schema theorems, 

discussed in the following subsections, give only a lower bound for the expected number of 

individuals belonging to a schema at generation g+1. 

4.4.1 Koza’s GP Schemata 

The first attempt to use Holland’s schema theorem in GP was made in  [170]. A schema 

H is represented as a set of S-expressions, defining a subspace of all trees. For instance, the 

schema H = [ ( % 2 X ) , X ] represents all programs that include at least once occurrence of  

X  and at least once occurrence of ( % 2 X ).This does not cater for the position of the 

schema, rather its defining components. Consequently, the same schema can be instantiated 

in various ways in the same program. An example of a program ( × X  ( % 2 X ) ) which 
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matches the above schema is shown in Figure  4.2. The arguments in  [170] were informal and 

did not provide any ordering or length definition for this schema. 

 

Figure  4.2 An example of Koza’s schemata 
 

4.4.2 Altenberg’s GP Schema Theorem 

The first mathematical formulation of a schema theorem for GP was performed in  [2]. It 

was assumed that the population was very large and fitness proportionate selection was used 

but no mutation. Thus, the frequency of a program i in the next generation (g+1) is given by: 
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, where 

 Φ  is the space of the population,  

 Ω  is the space of all possible sub-expressions extractable from Φ , 

 ),( sjiP ← is the probability of inserting expression s in program j to create program i, 

 )( ksC ←  is the probability that crossover picks expression s (schema) in program k. 

Equation (4.3) models the propagation of programs under the standard crossover 

operator and assumes that one offspring is only produced as a result of crossover. It is only 
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valid for the infinite population limit but can be generalised as per (4.4) and be valid for both 

finite and infinite populations. 
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,where 

 p (x , g) is the probability of selection of program x at generation g, 

E [ ] is the expected value operator. 

A schema s in this definition is a sub-expression. It differs from the Koza’s schema, 

where it can be made from multiple sub-expressions.  

4.4.3 O’Reilly’s GP Schemata 

A schema is defined  [247] as a multiset of sub-trees and tree fragments, which are 

trees with at least one leaf that is a “don’t care” (“*”) symbol which can be matched by any 

sub-tree. For instance, the schema H = [ ( × Z * ),  Z , Z ] represents all the programs that 

include at least one occurrence of ( × Z * ) and at least two occurrences of Z. The tree 

fragment ( × Z * ) includes all the programs which have a × and a first argument of Z. Figure 

 4.3 shows an example for the instantiation of this schema.  

 

Figure  4.3 An example of O’Reilly’s schemata 
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 The order of the schema is defined as the number of non-* nodes in the fragments 

contained in the schema. The defining length is the number of the links in the expressions 

and tree fragments in the schema as well as the links that connect them together. The schema 

theorem derived is as follows: 
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,where 

 ),,( gjHp d is the probability of disruption of schema H contained in program j, 

i(H,g) is the number of instances of H at generation g, 

f(H,g) is the mean fitness of the instances of H.  

The probability of disruption is the ratio between the defining length of H contained 

in program j and the total number of crossover locations in j. This probability depends on the 

size, shape and composition of the tree j matching the schema H. The mean fitness of the 

instances of H is calculated as the weighted sum of the fitnesses of the programs matching H. 

The weights are computed as the ratios between the number of instances of H in each 

program and the total number of instances of H in the population. The drawback of using the 

maximum probability is that it produces a conservative measure of the number of schemata in 

the next generation.  

4.4.4 Rosca’s Rooted Tree Schemata 

A schema is a contiguous tree fragment, which includes the root node of the tree 

 [274]. For instance, the rooted tree schema H = ( × X * ) represents all the programs with a 

root node of × and first argument of X. Figure  4.4 shows an example for the instantiation of 

this schema. This contains the positional information in the definition of the schema, which 
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was absent in the previous three definitions. This implies that a schema H can be instantiated 

only once within a program. 

 

Figure  4.4 An example of Rosca’s schemata 
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, where 

 N(j) is the size of the program j matching the schema H, 

O(H) is the order of schema H, which is the number of defining symbols in H 

Π  is a multiset representing the population and Π∩H  represents the multisets 

including all programs in Π  which are also members of H.  

4.4.5 Poli & Langdon’s Schemata (Fixed Shape and Size Schemata) 

A schema is a rooted tree composed of nodes from the combined set and * 

representing exactly a single function or terminal  [257]. The operator * is a polymorphic 

function where its arity is the number of different arities from the combined set. 
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Figure  4.5 An example of Poli & Langdon schemata together with its program 
 

The proposal in  [257] was in line with the original schema definition for GA. The 

schema H represents multiple programs, all having the same labels for the non-* nodes and 

the same shape as the tree corresponding to H. The order O(H) of the schema H is defined as 

to the number of non-* symbols. The length N(H) of the schema H is defined as the total 

number of nodes in the schema. The defining length L(H) is the number of links in the 

minimum tree fragment that includes all the non-* symbols within the schema. This 

definition of schema also contains the positional information, which was absent in the other 

definitions.        

Definition 4.4 The schema G is a hyperspace if it does not contain any defining 
nodes, i.e. O(G) = 0. Each hyperspace represents all the programs with 
a given shape. 

Definition 4.5 The schema H is a hyperplane (ordinary schemata) if it contains at 
least one defining node. 

Definition 4.6 The schema G(H) is called the hyperspace associated with H and is 
obtained by replacing all the defining nodes in a hyperplane H with *-
symbols.  

 

The one-point mutation and one-point crossover are defined in  [257]. The one-point 

mutation involves the replacement of a terminal with another terminal and replacement of a 

function with another function with the same arity. The one-point crossover (further 

discussed in the next chapter) involves the alignments of parents and the selection of a 
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common crossover point followed by the swapping of the two sub-trees below this point. For 

a GP with fitness proportionate selection, one-point mutation and one-point crossover the 

schema theorem can be stated as follows:  
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, where 
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gfM
gHfgHmgHp = is the probability of selection of schema H, 

pm is the probability that a location in the tree is mutated, 

pdiff(g) is the probability that the offspring produced by 1-point crossover  

between programs h and ĥ  does not match H, given that h matches H 

and ĥ  does not match H. 

4.4.6 Exact GP Schema Theorems 

In the last few subsections, the pessimistic schema theories for GP were presented. These 

theories only consider the worst-case situation for schema disruption. Hence, they only 

provide the lower bounds for the expected number of instances of a schema H at generation 

g+1. It is required to develop theories that can model schema creation exactly, rather than 

providing a lower bound for the expected number. 

Definition 4.7 The total schema transmission probability for the schema H, α(H,g) , 
represents the probability that at generation g the trees produced will 
match H.  

 

If the programs all have exactly the same shape and size and use the one-point 

crossover operator, then the total transmission probability of a schema H can be expressed as: 
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, where  

l(H,k) is the schema obtained by replacing all of the nodes above point k with the  

don’t care symbol (the symbol l stands for “lower part of”),  

u(H,k) is the schema obtained by replacing all of the nodes below point k with the  

don’t care symbol (the symbol u stands for “upper part of”),  

Definition 4.8 The hyperschema function set is the function set in GP and the *-
symbol. The * symbol represents only one node. 

Definition 4.9 The hyperschema terminal set is the terminal set in GP plus the *-
symbol and the #-symbol. The #-symbol represents any valid sub-tree 

Definition 4.10 The GP hyperschema is a rooted tree composed from the hyperschema 
function set and hyperschema terminal set. 

 

The generalisation of (4.8) is valid for individuals that include variable sizes and shapes and 

is given by (4.9).  
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, where, 

)ˆ,( hhNC  is the number of nodes representing the common region between  

the program h  and the program ĥ , 

)ˆ,( hhC  is the set of indices of the crossover points in the common region,  

  δ(x) returns 1 if x is TRUE, otherwise 0, 

  L(H,k) is the hyperschema produced by replacing the nodes between the  

crossover point k and the root node with * and all the subtrees 

connected to those nodes with #, 

U(H,k) is the hyperschema produced by replacing the subtree below the 

crossover point k with # and, 

  the first two summations in (4.9) are over all the individuals in the population. 
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4.5 Concluding Remarks 
 

In this chapter, some of the theoretical basics in the field of GP were presented. A 

major part of this chapter introduced the concept of schema in GP. The schema theory may 

provide a better understanding of the dynamics of the populations in GP. It can predict the 

expected number of instances of a schema in the next generation. It provides a way of 

modelling the algorithm, its representation and operators. However, it should be noted that 

schema theorems have not been fully developed or exploited  [195] and therefore a more 

extensive research in this area is required to further increase our understandings of the theory 

of GP and possibly pave the way to new innovative directions. 
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CHAPTER 5 

 

5 A SURVEY AND TAXONOMY OF 
PERFORMANCE IMPROVEMENT OF GP   

 
 
 
“If I have seen further it is by standing on the shoulders of giants”, Sir Isaac Newton. 
 
 
 
 
 
 
 
 
 
 
 

5.1 Classification of Evolutionary Algorithms 
 

In the natural world, there is a wealth of complex and intelligent biological organisms 

and creatures. Consequently, researchers have viewed evolutionary processes as a powerful 

concept, resulting in the birth of Evolutionary Computation (EC). As previously described in 

Chapter one and depicted in Figure  5.1, Evolutionary Computation has four main traditional 

variants; Evolutionary Programming (EP), Evolution Strategies (ES), Genetic Algorithms 

(GA) and the youngest stream the Genetic Programming (GP). All the EC variants are based 

on the same concept of Darwinian evolution and thus the underlying idea is the same for all 

of them. That is, they start off with an initial random population of individuals and process 

this set of candidate solutions simultaneously, using natural selection and operations such as 

crossover and mutation to produce new candidate solutions. All the various dialects of EC are 

population based and stochastic. They use random initialisation together with architecture 
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altering operations, fitness function, selection mechanisms and termination conditions to 

discover a solution.  

 

Figure  5.1 Evolutionary Computation with its main variants 
 

The primary feature that characterises each EC system into its own stream is how the 

chromosomes are encoded. In fact, the different EC systems were organised in  [13] based on 

their type of representation. This point is graphically illustrated in Figure  5.2. In other words, 

the main difference is in the structure undergoing adaptation, i.e. the representation or the 

genotypes. Consequently, the definition of their respective variational operators becomes 

specific and different. Each discipline therefore differs in its application area. 
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Figure  5.2 Alternate taxonomy based on type of representation  [13] 
 

This chapter presents a comprehensive overview and taxonomy of previous research 

conducted to enhance the performance of Genetic Programming. Although this chapter 

covers other variants of the Genetic Programming paradigm, its main focus is on the 

canonical or standard GP which was championed by Koza in  [167]  [170] based on tree 

structures. The creative ideas proposed by researchers to improve the effectiveness and 

efficiency of GP are reviewed and categorised in the following sections. Section 5.2 

discusses the overall modifications and improvements. Section 5.3 looks at Improved GP. 

Sections 5.4 to 5.6 discuss the proposed modifications that various researchers have put 

forward and form the bulk of this chapter. In Section 5.7, some of the GP variants and 

Hybrids are highlighted and briefly discussed. 
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5.2 Overview of Modifications and Improvements 
 

The modifications that have been made to the GP to improve performance or save 

computational effort generally fall into three categories  [166], GP variants, hybrids and 

improved GP as depicted in Figure  5.3 and described below. 

 

Figure  5.3 Variants of canonical GP 
 

The structures within the canonical or standard GP are tree-based. However, the 

structures that undergo adaptation within the GP variants are no longer tree-based and 

significantly deviate from the original GP championed by Koza. As previously mentioned, 

since the genome or structure is the primary feature that distinguishes the different variants 

within EC, the same argument can be applied here. In other words, these variants of GP can 

be viewed as separate minor dialects of EC because the representation is changed but they 

have the same motivation or application of a GP. Hybridisation of EC with other techniques, 

generally known as Memetic Algorithms (MA)  [71], are considered to be problem tailored 

methods. The combination of GP with other algorithms or problem specific techniques 

enriches the GP with knowledge and thereby improves its performance. All the other 

innovative methods to improve the performance of GP fall in the last category, termed here 

as Improved GP (IGP), which preserves the tree-based structure of the canonical GP. 
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Although GP Variants and Hybrids are briefly discussed herein, the focus will be based on 

Improved GP. 

5.3 Improved GP 
 

Figure  5.4 shows how the various improvements on Standard GP may be organised 

into possible categories. Generally the improvements are either implemented to remedy an 

acknowledged issue within Genetic Programming, such as the bloat phenomenon, lack of 

diversity or premature convergence etc, or the improvements provide pioneering 

modifications to the components of the GP algorithm. The proposed modifications can 

usually be further subdivided into three classes. They could be fixed and predetermined prior 

to the run and left unaltered during the run. For example, one may determine a certain 

variation operation is beneficial and recommend its use for the entire run. Secondly, the 

modifications could be deterministic and static - there is a predetermined rule which specifies 

how and when a certain modification will take place. The rule is a function f(g) of time or 

generation g. For example, it may be suggested that the mutation operation should only be 

used after generation number g>30. Lastly, the modifications could be based on some 

feedback mechanism. For example, if a certain condition occurs, then a particular selection 

mechanism or operation should take effect. 
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Figure  5.4 Classification of IGP into different categories 
 

5.4 Improvements on Components of GP 
 

Genetic Programming has a number of main components which define its operation, 

namely variation operators, initialisation, selection, control parameters, fitness and 

termination. Researchers have looked into improving or altering all these components in turn 

to enhance the performance of GP, as detailed in the following subsections. 
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5.4.1 Variation Operator 

Variation operators are used to create new candidate solutions and are typically 

divided based on their arity, e.g. mutation and crossover being unary and binary variation 

operators respectively. Although crossover shoulders a great responsibility for the evolution 

of the GP algorithm  [74] [75], the mutation operator plays a significant role in the genetic 

convergence process by preventing loss of genetic diversity in the population  [197]. The 

main search operator in GP is the crossover operator and all the other variation operators are 

often considered as secondary operations. The crossover operator is discussed in the 

following sub-subsection and the next subsection reviews the secondary operators and all the 

other newly proposed operators. 

5.4.1.1 Crossover 

The primary operation for modifying genetic structures in GP is crossover. Crossover 

is a stochastic operator which merges information from generally two parents to create 

offspring genotypes. The first crossover operator for GP was defined in  [167]. The effect of 

crossover was investigated in  [243]. It was argued that it has the disadvantage of producing a 

high computational cost due to growth of individuals in size and complexity during the 

evolution process  [303]. This effect, which is known as code bloat, is formed by an excessive 

exploration capability of the crossover  [217]. It was argued  [21] that 75% of crossover event 

could be termed as lethal and can result in disruption of building blocks. With recombination 

or crossover being considered as the primary operator in GP, many researchers have looked 

into ways of modifying it to improve the efficiency.  

As crossover was viewed to be destructive, the brood recombination aimed to 

decrease this effect and preserve good building blocks. The “soft brood selection” method  [1] 

generated a brood by performing crossover over the selected parents N times and then 

introduced the best of the brood in the next generation by holding a tournament. The “brood 
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recombination” was introduced in  [298]  [299], which was a refinement of the soft brood 

selection. The Brood Selection Recombination Operator RB(n) produced n pairs of offspring 

but only kept the best two of the 2×n produced offspring using a selection function. As the 

brood selection performs multiple samplings of the crossover operator and keeps the best 2 

offspring, it can essentially be viewed as a hill-climbing crossover operator. Although, the 

brood selection increases the computational cost per generation it can however increase the 

selection pressure and therefore the rate of convergence towards an optimal solution for some 

problems. To reduce the computational cost a clever approach was implemented  [298], where 

the evaluation of the new 2×n offspring is on a small portion of the training set rather than all 

the test cases. The brood size was further investigated  [337] for the brood recombination 

crossover method. It was shown that as the brood size increased, the performance improved 

and the brood recombination method outperformed the standard crossover method for the 

three object classification problems studied. The disruptive nature of crossover was reduced 

by the brood recombination, as the children of the destructive crossover events were rejected 

by this operator and as a result the building of larger building blocks was promoted. 

Other approaches  [259] [332] choose good sub-trees or crossover points to swap. 

Context-Aware Crossover  [139] [216] discovers the best possible crossover site for a sub-tree 

and is shown to consistently attain higher fitness. There are similarities between the context-

aware crossover and the Brood Crossover in that multiple children are produced during each 

crossover event. The destructive effects of standard crossover was minimised in  [214] by 

placing the selected sub-tree in its best context in the parent tree. The best context was 

calculated by using the effect of the placement of the selected sub-tree on the overall fitness 

of the parent tree and then selecting the placement, which produced the maximum final 

fitness. 
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Some heuristics were added to the standard crossover operator  [131] to make it smart. 

Here, a form of intelligent heuristic guidance for the GP crossover was proposed. The smart 

crossover computed the performance values for sub-trees and used this information to decide 

which sub-trees are potential building blocks to be inserted into another sub-tree and which 

sub-trees are to be replaced due to their poor performance value.  

A homologous crossover operator was introduced in  [21], where the exchange is 

strongly biased towards very similar chunks of genome. Structural distances are measured by 

comparing genotypes and functional distances by comparing phenotypes. These two 

measures are used to determine the probability that the trees are crossed over at a specific 

node. In this way, the crossover probabilities are biased by structural and functional features 

of the trees. Similarly, a GP 1-Point crossover operator was introduced in  [256], which had 

homologous overtones. This was based on the one-point crossover for GAs, where the 

selection process involved checking for structural similarities of trees to find points with 

structural homology.  

The Ripple Crossover, examined in  [152] , was shown to outperform the traditional 

sub-tree crossover on two benchmark problems. Although the Ripple Crossover was more 

explorative than the single tree node crossover, it was a more disruptive crossover operator 

and its disruptive nature resulted in a slower convergence. A one-point crossover was 

introduced in  [257], in which the same crossover point is selected in both parents. Two trees 

are aligned from the root nodes and recursively and jointly traversed. Recursion is stopped as 

soon as an arity mismatch between the corresponding nodes in the two trees is observed. A 

random crossover point is selected from the above identified nodes and the two sub-trees 

below the common crossover point are swapped. Some of the interesting features of the one-

point crossover are that it is a simpler form of crossover for GP and it facilitates population 
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convergence by searching for good partial upper part or structure solutions. Moreover, it does 

not increase the depth of the offspring beyond that of their parents. 

Crossover points are conventionally selected randomly. A depth-dependent crossover 

for GP was proposed  [123], in which the depth selection ratio was varied according to the 

depth of a node. Shallow nodes were favoured as the crossover points and hence larger sub-

trees were swapped. This promoted the accumulation of useful building blocks via the 

encapsulation of a larger part of a tree. The behaviour of the uniform crossover and point 

mutation was examined in  [251]  presenting a novel representation of function nodes, which 

allowed the search operators to make smaller movements around the solution space. It was 

shown that the performance on the even-6-parity problem was improved by three orders of 

magnitude when compared with the standard GP.  

The headless chicken crossover operator, which was studied in  [188] , uses a selected 

program P and a newly randomly generated program R to produce an offspring by replacing 

a sub-tree of P with a replaced sub-tree from R until it finds an offspring with greater or 

equal fitness to P. The crossover-hill climbing  [21] operator is another form of the headless 

chicken crossover.  In  [3]  [114], the fitness of the individual is the sum of its fitness 

components or genes. A gene is periodically added to the individual during the evolution and 

if it improves its fitness it is kept, otherwise discarded. Between gene additions, the 

population evolves by intergene crossover.  

A novel crossover method was proposed  [150] using the usage frequency of nodes.  

Three crossover techniques were investigated, namely a crossover with crossover points in 

both nodes having high usage frequency, with crossover points in a node having high usage 

frequency and a node having low usage frequency, with crossover points in both nodes 

having low usage frequency. It was discovered that their method was promising for speedup 

in GP. Many researchers looked into determining crossover points that are likely to be more 
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advantageous. For example, a higher-level analysis of the population as a whole was used in 

 [271] utilizing statistics gathered over all sub-trees to determine the crossover points or in 

 [15] Selective Self-Adaptive Crossover (SSAC) and Self-Adaptive Multi-Crossover (SAMC) 

methods were used. The depth-fair crossover (DFC) was introduced in  [156], which allowed 

for weighting crossover points. It assigned an equal weight to each depth of the tree. Each 

node within each depth was given an equal amount of the depth weight. Improvements were 

also made to the crossover operator  [338] using a measure called looseness to guide the 

selection of crossover points rather than choosing them randomly. Improvement was shown 

over the headless chicken crossover  [188] and the standard crossover. 

The latest developments imply that the crossover operator is on its way to becoming a 

more powerful and robust operator. It is believed that there is still room for the crossover 

operator to improve the quality and efficiency of the search it conducts. This can be achieved 

by either combining the current approaches or devising new ways for improvement. 

5.4.1.2 Other Operators 

In addition to the primary genetic operation of crossover, there are various secondary 

operations such as mutation, permutation encapsulation etc. The effect of various operators, 

namely mutation, permutation, encapsulation and editing, on GP performance was first 

investigated in  [170]. Although it was argued that the subject was certainly not solved and 

required further work for a general conclusion, it was shown that for some selected problems 

there was no substantial difference in performance when these operators were included.  

The performance improvements in GP provided by Automatic Defined Functions 

(ADF) and decimation were compared in  [235] using the Santa Fe ant, the lawnmower, the 

even 3-bit parity and symbolic regression problems. It was concluded that decimation 

provided superior improvement in performance over ADF.  It should however be noted that it 
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was concluded that ADF was not effective for simple problems  [174] and its benefits only 

became increasingly evident for complex problems.  

To overcome the disruption of building-blocks due to crossover and mutation, an 

adaptive program called “STROGANOFF” (STructured Representation On Genetic 

Algorithms for Non-linear Function Fitting) was introduced  [128]  [129]. In  [130] an adaptive 

recombination for a numerical GP was proposed which was guided by a measure called 

Minimum Description Length (MDL). The application of mutation or crossover operators 

was adaptively controlled to improve efficiency. 

A new crossover operator was introduced in  [74]  [75] to minimise the number of 

evaluations required to find an ideal solution by evaluating the observed strengths and 

weaknesses of selected individuals within areas of the problem. The motivation in  [75] was 

to intelligently perform crossover by discriminating between the portions of each parent that 

lead to success and failure. A new GP operator, the memetic crossover, was introduced, 

which allowed for an intelligent search of the feature-space. The proposed process involved 

the identification of specific areas of importance within the problem (sub-problem) and in 

tracking the nodes executed while observing the individual’s performance as it was 

evaluated. The information gathered was then organised by ranking the nodes.  Nodes that 

were executed were said to participate in the sub-problem. Bad and good nodes were 

associated with one or more sub-problem failures and successes respectively. Using the 

memetic crossover method  [75] individuals were examined to ensure compatibility with 

respect to sub-problem performance. The individuals were regarded as compatible, when a 

significant sub-problem match occurred between one of the worst performing nodes in the 

recipient and one of the best performing nodes in a potential donor. In this instance, 

crossover was performed with the recipient replacing its bad node with the donor’s good 

node. The Los Altos trail and the royal tree problem, which can easily be decomposed into 
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well-defined sub-problems, were used as benchmark problems. For this approach to be 

significantly advantageous, it was required that the problem be able to be methodically 

decomposed into sub-problems. Although memetic crossover incurred additional processing 

cost, they were considered negligible when compared to the time saved through the reduction 

in the number of evaluations. 

The macro-mutation operator (headless chicken crossover) was shown in  [188] to 

outperform the traditional GP crossover operator. The pruning genetic operator was proposed 

in  [239] for removing useless structures from the GP individual. The operation was applied to 

randomly selected sub-trees. Redundant node patterns, which are problem dependant and 

uniquely defined for each problem, were searched and replaced with an effective terminal 

node resulting in efficiency improvement in the GP’s search.  

In  [19], crossover was between a member of the population and an ancestor tree, 

which was a fixed collection of trees. The crossover operator generated only one tree, the 

population member with one of its sub-trees replaced by a sub-tree of the ancestor. This 

variation operator, which was neither a crossover nor a mutation, used information from two 

individuals with only one member belonging to the population. Analysis of mean tree size 

growth demonstrated that this operation limited parse tree growth because the ancestors did 

not grow. The genetic material in the ancestor set did not change and was available 

indefinitely, implying that the building blocks or information was never lost. 

It is suggested that new possible operators or methodologies should be devised that 

either promote finding good building blocks or reduce the destructive nature of the currently 

proposed GP operators. Care should however be exercised that that the reduction of 

disruptive effects of current operators, that generate new candidate solutions, should not be 

overindulged as it may simply transform the GP paradigm to a simple hill climber, which is 

not desirable. 
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5.4.2 Initialisation 

Initialisation involves the random generation of individuals for the initial population. 

The traditional GP tree-creation algorithms GROW, FULL and Ramped Half-and-Half were 

introduced in  [170]. It was shown that Ramped Half-and-Half was the best as observed for 

the Quartic polynomial, 6-multiplexer, Artificial Ant and Linear equations problems. In 

 [194], a random initialisation, which produced programs of random shapes, was defined. 

The RAND_tree algorithm was introduced in  [132] and in  [30] where trees were 

initialised with exact uniform probability from a tree-derivation grammar. Using diverse 

random seeds, multiple abbreviated runs were made in  [254]. An enriched population was 

created using the best member from each abbreviated run. This enriched population was then 

loaded together with a full set of randomly generated unique members at the start of a 

consolidated run.  

Two new tree-creation algorithms Probabilistic Tree-Creation (PTC 1 and PTC 2) 

were offered by  [209], where an average tree size or a distribution of tree sizes could be 

specified with guaranteed probabilities of occurrence for specific terminal and non-terminal 

functions within the generated trees. PTC 1 & 2 had very low computational complexity and 

had comparable results with the GROW technique. 

Further research in formulating novel ways of generating new individuals per run 

should be called for, as it is believed that the overall fitness and diversity of the initial 

population in the first generation plays a significant role in the success of the later 

generations within that run. The main goal should be to enrich the initial population and 

increase its structural and behavioural diversity without introducing a large computational 

effort. Finer initialisation techniques for new runs may emerge by either exploring memory 

or learned behaviour from previous runs or introducing problem specific innovations into the 

initialisation stage. 
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5.4.3 Selection 

The role of selection is to differentiate among individuals based on their quality. 

Individuals with higher quality are favoured to be parents participating in a variation 

operation or be replacements of an existing individual in the case of recombination. Selection 

is generally responsible for driving quality improvements and is probabilistic. The 

performance characteristics of a repertoire of selection methods, namely proportional 

selection, ranking selection, and tournament selection, were investigated for time series 

prediction in  [157].  

In  [260], the sampling behaviour of tournament selection over multiple generations 

was analysed, where the analysis was focused on individuals which did not participate in any 

tournament at all, due to not being sampled during the creation of the required tournament 

sets. A new selection scheme was proposed in  [92], which was based on standard tournament 

selection, to encourage genetically dissimilar individuals to undergo genetic operation. It 

demonstrated performance improvements of GP for the algebraic symbolic regression 

problem. An automatic selection pressure for the tournament selection was investigated in 

 [327] to improve the efficiency of GP. The number of tournament candidates was 

dynamically changed in response to the changing evolutionary process. Using the symbolic 

regression and the even-6 parity problems it was shown that this approach could improve the 

effectiveness and efficiency of GP systems. In  [330], the relationship between population size 

and tournament size was investigated and a new fitness evaluation saving algorithm, 

Evaluated-just-in-time (Ejit), was proposed which resulted in constant computational savings 

by avoiding the evaluation of not-sampled individuals. 

It is believed that a large training set of fitness cases could slow down GP. Dynamic 

subset selection based on a fitness case was proposed in  [196], where an appropriate 

topology-based subset selection method allowed individuals to be evaluated on a smaller 
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subset of fitness cases. A topology relationship on the set of fitness cases was created during 

the evolutionary search by increasing the strength of the relation between two fitness cases 

that an individual could successfully solve. The proposed selection method selected a subset, 

where the fitness cases were distantly related with respect to the induced topology. Using 

four different problems, it was shown that dynamic topology-based selection of fitness cases 

progressed on average faster than the stochastic subset sampling.  

In the canonical GP, selection pressure is only applied in the selection of parents and 

the offspring are simply propagated into the next generation without any selection. In  [329], a 

many-offspring breeding process with selection pressure applied to the selection of offspring 

was investigated. A many-offspring breeding process can be viewed as a standard crossover 

that generates a large number of poor offspring in the search for good offspring. Two 

crossover operators were proposed. Firstly, the Ideal Crossover considers all the possible 

ways of recombining two selected parents to produce all the possible offspring. It then 

evaluates all the offspring and keeps the best two offspring with the highest fitness values. 

Secondly, the Partial Crossover, which is similar to the context-aware crossover operator 

 [214],  selects a random point for crossover in one parent P1 but considers all the other nodes 

in the other parent P2 to produce offspring. The focus of these techniques is to optimise the 

offspring’s fitness and thereby increasing selection pressure. 

A theoretical and empirical study that will increase our understanding of which 

selection methodologies can be deemed superior during different stages of the evolutionary 

process is recommended. This study can then become the basis for implementing new 

schemes that explore dynamic selection of various proposed selection techniques during the 

run. In addition, further innovative ways that can result in reducing the computational burden 

of selection can be very beneficial for enhancing the performance of GP. 
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5.4.4 Control Parameters 

The genetic programming paradigm is controlled by various control parameters such 

as the maximum number of generations (G), the population size (M), the probability of 

crossover (Pc), recombination (Pr), mutation (Pm)  and the maximum tree depth (D), to name 

but a few. 

The issue of parameter control and setting was discussed in  [71]. The algorithm 

parameters can either be tuned or adapted. Parameter tuning involves the empirical 

investigation of parameter values which will result in good performance before the run. Once 

the best suited parameter value for the specific problem is determined, its value is set in 

advance and remains unchanged for the duration of the run. Alternatively, the parameters 

could be deterministically altered as a function of time/generation during the run or 

adaptively controlled through some heuristic feedback mechanism resulting in explicit 

adaptation. On the other hand, the actual parameters could be encoded into the data structures 

of the algorithm and evolve with the adaptation being entirely implicit. This can be 

summarised as per Figure  5.5. 
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Figure  5.5 Taxonomy of parameter adjustment 
 
5.4.4.1 Tree Size 

There has been substantial amount of work performed concerning the solution's shape 
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the random initial population and evolved individuals are restricted differently, namely 

through the maximum initial tree size Di and the maximum created initial size Dc. These 

parameters impose restrictions on the maximum allowable depth for a tree.  The correlation 

between average parent tree size and the modification point (crossover or mutation) was 

shown in  [213]. Both of these were directly linked to the size of the resulting child.  

A dynamic tree depth limit was explored in  [283]  [284]. The dynamic limit was 

initially set as high as the maximum depth of the initial random trees  [283]. Trees which 
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question was the best individual found so far. In this instance, the dynamic limit was 

increased to match the depth of this new best-of-run individual. The dynamic limit was 

lowered as the new best-of-run individual allowed such reduction  [284]. Moreover, a 

dynamic tree depth was adopted in  [342] to constrain the complexity of programs. The 

proposed method was applied to data fitting and forecasting problems with results indicating 

improvement over GP.  

Some researchers have looked into limiting the total amount of tree nodes of the 

entire population  [311], rather than imposing limits at the individual level. The concept of 

resource-limited GP, which was a further development to  [311], was introduced in  [285]. As 

the total number of nodes in the population exceeded a predefined limit, resources became 

scarce and not all offspring were guaranteed to progress. The candidates were queued by 

fitness and progressed into the next generation on a first come first serve basis. The trees that 

required more resources than the amount still available would not survive. The relationship 

between size and fitness was not explicitly defined and was a product of the evolutionary 

process. A natural side effect of this approach was that the population was automatically 

resized. Although these approaches used the same rationale, they operated at different levels 

of the GP paradigm, namely acting at the individual level and at the population level.  Tree 

depth limits imposed a maximum depth to each individual and Resource-limited GP limited 

the total amount of resources that the entire population could use.  

The two different approaches, tree depth limits and resource-limited GP, were 

compared in  [286] using symbolic regression, even parity, and artificial ant problems. It was 

shown that the resource-limited GP was superior to tree depth limits  [286]. A dynamic 

approach to resource-limited GP was developed in  [287]. The dynamic resource limit was 

initially set as high as the amount of resources required for the first generation. The 

allocation of trees, sorted according to fitness, continued into the next generation until the 
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resources were exhausted (as per the original resource-limited GP). The rejected individuals 

would be considered as candidates for the next generation if the mean population fitness was 

improved. Hence the dynamic resource limit was raised as a function of mean population 

fitness providing the additionally needed resources. It was shown that the dynamic approach 

to resource-limited GP achieved better performance when compared with the static approach 

and with the traditional depth limits, using the symbolic regression polynomial problem and 

Santa Fe artificial ant problem. 

5.4.4.2 Operator and Selection Probabilities 

As GP is a completely stochastic process, it is controlled by various probabilistic 

control parameters, such as the probability of selecting an internal point (Pip) as a node for 

the crossover operation or probability of crossover and reproduction (Pc and Pr) which 

determine by which process the fraction of individuals are created for the next generation.  

In  [243], Explicitly Defined Introns (EDIs) were introduced as instruction segments 

that were inserted between two nodes of useful code. EDIs changed the probability of 

crossover between the two nodes on either side of the EDI improving the convergence 

properties of a GP algorithm. Similarly in  [38] the probability of selection of every node for 

crossover was indirectly adapted through the evolutive introns (EIs). Evolutive introns are 

explicitly defined introns, which are artificially generated, with the aim to increase the 

probability of selecting good crossover points as the evolutionary process continues. The 

automatic growth and shrinking of non-coding segments in the individuals are promoted, 

thereby adapting the probabilities of groups of code being protected.  

The adaptation of operator probabilities in genetic programming was investigated in 

 [237] with an attempt to reduce the number of free parameters within GP. Two problems 

from the areas of symbolic regression and classification were used to show that the results 
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were better than randomly chosen parameter sets and could contest with parameters set as 

based on empirical knowledge. 

5.4.4.3 Terminal and Function Sets 

In the conventional GP, the structures are typically comprised of the set of Nfunc 

functions from the function set { }NfuncfffF ,,, 21 L=  and the set of Nterm terminals from the 

terminal set { }NtermaaaT ,,, 21 L=  forming the combined set TFC ∪= . This combined set 

defines the set of all the possible structures or elements. The choice of function and terminal 

sets can have a significant effect on the GP's performance and if the sets are not sufficient to 

express a solution for a given problem, then GP would not be able to solve the problem.  

The effect of extraneous variables and functions was first studied by  [170] and it was 

shown that a linear degradation in performance was observed as additional extraneous 

variables were added for the cubic polynomial problem. Similar results were obtained for 

extraneous functions; nevertheless it was shown that for some specific problems, extraneous 

functions improved performance. Furthermore, no substantial difference in performance was 

observed for extraneous ephemeral random constants. It was concluded that the question of 

extraneous sets was not definitely answered in this study and further experimental and 

theoretical work was recommended to be carried out to lead to general conclusions. In  [313], 

a systematic study was conducted of how to select appropriate function sets to optimise 

performance. They classified functions into function groups of equivalent functions and 

showed that a set that was optimally diverse (that included one function from each function 

group) was most appropriate. 

5.4.4.4 Population and Generation Number 

Population size (M) and the maximum number of generations (G) are the two major 

numerical control parameters in GP, with their values generally dependant on the difficulty 

of the problem. Dynamic and adaptive population sizing has been previously studied in the 
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areas of genetic algorithms and particle swarm optimisation  [122]  [205]  [208]  [300]. Some 

controversy has been reported in the past literature on whether on-the-fly population sizing is 

effective  [72]  [206] in EA. The role of population size in GP was first very briefly studied by 

 [170], with the population size maintained at a constant level and not varied throughout the 

run. It was shown that using a large population was not always the best way to solve 

problems  [93]. The control of population size in GP was first implemented in  [292] to 

improve the algorithm’s robustness and reliability. The plague operator (first experimented 

with in GA  [62]  [32]) was introduced in  [79] to fight bloat in GP, where individuals were 

removed at a linear rate to compensate for the increase in individual size. The decrease in 

population size was also studied in  [212], where the population size was gradually decreased 

throughout the GP run. In Virtual Ramping the size of the population and the number of 

generations were continuously increased  [83] reducing premature convergence. In  [164], the 

population variation scheme was introduced. Fernandez et al.  [81] introduced a technique to 

dynamically vary the size of the population during the execution of the GP system. In  [165] 

various new ways to dynamically vary the population size during the run of the GP system 

were proposed. It should be noted that population implosion  [212] is the same as the plague 

operator, as far as this thesis is concerned. They both reduce the population size at a linear 

rate. Their only difference is in the way they measure computational effort. In plague, the 

number of nodes are counted (as the main intention is reduction of bloat) while reducing 

population size, whereas in population implosion, the number of evaluations are counted. 

Therefore, as far as this thesis is concerned both works are identical in the way they reduce 

population size, and their names will be used interchangeably. 

5.4.5 Fitness and Objective Function 

Fitness is the driving force of natural selection and measures the quality of an 

individual with respect to how well an individual can solve a given problem.  It is generally 
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defined by an objective or fitness function forming the basis for selection and defining and 

facilitating improvements.  

Multi-objective techniques  [39], which allow the concurrent optimisation of several 

objectives by searching the so-called Pareto-optimal solutions, were investigated in  [27] to 

evolve compact programs. There are various multi-objective optimisation techniques such as 

SPEA (Strength Pareto Evolutionary Algorithm)  [343], SPEA2 (an improved version of 

SPEA)   [345], SPEA2+   [158], NSGA-11   [64], Adaptive Parsimony Pressure   [334]. The 

program size was considered to be a second independent objective in addition to the program 

functionality in  [27] and an enhanced version of SPEA proposed in  [344] was used. A multi-

objective GP was used in  [18] to make improvements on the results.  

Novel strategies based on elastic artificial selection (EAS) and improved minimum 

description length (IMDL) were investigated in  [162] for fitness evaluation and selection to 

create shorter programs and prevent premature convergence. The effect of tournament 

selection and fitness proportionate selection with and without over-selection for particular 

problems was investigated in  [170]. It was shown that for many problems it was possible to 

enhance the performance of GP by greedily over-selecting the fitter individuals in the 

population.  

In  [328] the whole population was clustered to reduce the fitness evaluations and 

improve the effectiveness of GP. The clustering was performed by a heuristic called fitness-

case-equivalence. For each cluster, a cluster representative was selected and its fitness 

calculated and directly assigned to other members in the same cluster. Using a clustering 

tournament selection method and a series of experiments of symbolic regression, binary 

classification and multi-class classification problems, it was shown that the new GP system 

outperformed the standard GP on these problems.  
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A new methodology was proposed  [233] to create a new training set of randomly-

generated fitness cases prior to each generation of the GP run instead of using a fixed set of 

fitness cases. It was shown that, this methodology was mainly useful to reduce the brittleness 

of GP when the fixed training population does not adequately represent the full range of 

difficult situations of the problem. The fitness function was scaled over time in order to 

improve performance  [94]. The motivation behind this approach was that it is often easier to 

learn difficult tasks after simpler tasks have been learned.  

As the majority of the computational effort in GP is expended in the fitness function, 

it is beneficial to avoid invoking the fitness function whenever possible. As the reproduction 

operator produces an identical copy of its parent, it is then quite obvious that the fitness 

evaluation can be safely avoided. This can result in considerable savings in computation 

because reproduction in GP conventionally accounts for the creation of ten percent of the 

new individuals. This flagging and caching of the already computed fitness of reproduced 

individuals was proposed in  [170], provided that there are no varying fitness cases from 

generation to generation. A technique was devised in  [140], which allowed the GP system to 

determine many instances in which invocation of the fitness function could be avoided. This 

was achieved through the consideration of the program nodes executed during fitness 

evaluation to establish whether a newly generated individual has the same fitness value as its 

parent. This could be realised through the identification of dormant nodes, which are program 

nodes that are never executed, extending a marking method described in  [28]. It was shown 

that this technique, when applied to the multiplexer problem and even-parity problem, 

resulted in significant savings in execution time. 
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5.4.6 Termination 

In traditional GP, a fixed number of generations are usually used as the condition for 

terminating the evolution process. To address the CPU time-consuming issue and the large 

amount of computational resources required for GP, the three different termination criteria of 

effort, time and max-generation were examined  [89]. An improved termination criterion was 

implemented in  [186] to prevent premature termination, when further search may continue to 

pay off, or to prevent unnecessarily continuing to search dead-ends when further progress 

seems implausible. Here, the run will continue as long as improvements continue to be made. 

A maximum number of unproductive generations is used to terminate a run. 

Examination of different measures for stagnation and premature convergence could 

be most promising together with newly invented methodologies to abruptly terminate a run 

and commence a new run with the knowledge gained from the previous run. Moreover, a 

thorough study on a dynamic termination method that is based on the combined structural 

and behavioural diversity is suggested. 

5.5 Innovative Ideas 
 

The improvements detailed in this section contain some pioneering modifications to 

the canonical GP algorithm to enhance its performance.  

5.5.1 Simplification 

An approach to online simplification was introduced in  [339], where programs were 

automatically simplified during the evolution using algebraic simplification rules, algebraic 

equivalence and prime techniques. The proposed method was tested on the regression and 

classification problems, showing its superior performance when compared with the standard 

GP systems. 
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5.5.2 Modularisation 

The technique of automatic function definition (ADF) was introduced by  [173] to 

potentially define useful functions dynamically during a run and to accelerate the discovery 

of solutions in GP. The number of fitness evaluations that must be executed  [174] can be 

considered as a reasonable measure of computational burden. In  [174], ADF was shown to 

allow the discovery and exploitation of regularities, symmetries, similarities and modularity 

of the problem environment. It was shown that for simpler versions of problems ADF was 

not effective but as the problems were scaled up increasing benefits became evident.  

Evolving modular programs was also investigated in  [10]  [12], where special 

mutation operators (compress and expand) defined modules from the developing programs at 

random, allowing modular programs to emerge using the Genetic Library Builder (GLiB). An 

approach for reusability was proposed in  [120] based on ADF, incorporating a library for 

keeping subroutines acquired by ADF. This library preserved knowledge and ensured 

reusability so that the acquired subroutines could be shared and reused. The most frequent 

sub-trees, which were expected to contain useful partial solutions, were grouped as modules 

 [268]. Such sub-trees were encapsulated by representing them as atoms in the terminal set. 

Additionally, a random sub-tree selection and encapsulation was examined and empirical 

results illustrated performance improvement over standard GP. A method for automatically 

generating useful subroutines by systematically considering all small trees was presented in 

 [43]. This algorithm moved progressively and systematically through the best trees of a given 

size and considered them as candidates for subroutine generation. This algorithm was 

successfully tested on the artificial ant problem.  

Layered learning has been used for solving GP problems in a hierarchical fashion. 

The layered learning approach  [57] [125] [126] [141] [295] decomposes a problem into 

subtasks, each of which is then associated with a layer in the problem-solving process. It is 
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believed that the learning achieved at lower layers when solving the simpler tasks directly 

facilitates the learning required in higher subtask layers. Two program architectures are 

proposed in  [142] for enabling the hierarchical decomposition based on the division of test 

input cases into subsets, each dealt with by an independently evolved code segment. The 

main program branch includes calls to these new entities via an expanded terminal set. The 

proposed technique offered substantial performance improvements over the more established 

methods such as the ADF for the even-10 parity problem. 

A sub-tree was randomly selected in Module Acquisition (MA)  [11] [161] from an 

individual and then a part of this sub-tree was extracted as a module and preserved in a 

library defined as a new function. This module was protected against blind crossover 

operations and could be referred to by other individuals. In Adaptive Representation GP 

(AR-GP)  [271], an effective sub-tree was selected and added as a new function to the 

function set to improve learning efficiency. 

For GP to be able to address more demanding larger and more complex solution 

programs, it is inevitable for GP to have the ability to scale up. One way to achieve this is 

through more efficient modularisation practices. Further theoretical and empirical studies that 

aid in understanding the concept of building blocks within GP, their early detection and their 

further development and enrichment would certainly be a promising way to explore new 

schemes or possible improvements of current methods. In addition, a study that combines the 

current approaches may provide new insights in this area. 

5.5.3 Other Innovative Ideas 

Double-based Genetic Algorithm (DGA), which improves the performance of a GA, 

was shown to be relevant for GP paradigm  [45]. Two types of doubles were defined based on 

permutations on the arguments and permutations on the terminals of the terminal set, 

introducing doubles in the population set. The Double-based Genetic Programming paradigm 
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provided a useful extension of the GP standard search procedure and demonstrated its 

advantages for Genetic Programming.  

The  Best SubTree Genetic Programming (BSTGP)  [234] selects the best sub-tree in 

order to provide the solution of the problem.  This is different from the canonical GP, where 

the fitness of a tree is given by its root node. BSTGP also produces smaller trees as nodes 

that do not belong to the best sub-tree are deleted. The proposed approach was tested using a 

number of symbolic regression and classification problems showing comparable results to 

standard GP. 

An approach using a clustering method was described  [17] to reorganise 

subpopulations in GP, with the goal of producing more highly fit individuals. The initial 

population P is divided into number of subpopulations Si after a nominated clustering 

frequency and according to the genetic similarity of the individuals. The sizes of the 

subpopulations are proportional to the average fitness of the individuals they contain. It was 

shown that a slight speedup over the canonical GP was observed for the multiplexer, parity 

and artificial ant problems. 

The evaluation of a generation is widely accepted to be the most expensive process in 

GP. Sub-tree caching and vectorised evaluation  [153] attempted to make this less expensive 

and more efficient. Two types of bottom-up and top-down caching were introduced, where 

the latter encouraged the caching of big sub-trees and the former encouraged the caching of 

small sub-trees. Although the caching of big sub-trees made the evaluation process more 

efficient, it was less likely that it could be matched and used again during the evaluation 

process due to its larger size.  

It should be noted that all the other innovative ideas proposed by various researchers, 

which are specific to either the GP components and operators or the GP aspects and concepts 
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that they pertain to, have been grouped, categorised and discussed in the other sections of this 

chapter. 

5.6 Solutions to Known Issues or Problems within GP 
 

The improvements detailed in this section endeavor to remedy an acknowledged issue 

within GP, such as the bloat phenomenon or lack of diversity etc.  

5.6.1 Closure 

The initial population-generating algorithms may not always generate valid 

individuals. The Grammar-guided genetic programming (GGGP) attempted to address this 

known closure problem. The reader is referred to Section 5.7.2. 

5.6.2 Premature Convergence 

Various studies have been conducted to address the issue of premature convergence 

 [243]  [326] [342]. The issue of Premature Convergence is mainly addressed by making 

improvements on the components of GP. The reader is referred to Section 5.4. 

5.6.3 Diversity 

There has been much work which has focused on diagnosing or remedying the loss of 

diversity within the Evolutionary Computation. A new method of approximating the genetic 

similarity between two individuals was presented in  [92], which used ancestry information to 

examine the issue of low population diversity. By defining a new diversity-preserving 

selection scheme, genetically dissimilar individuals were selected to undergo genetic 

operation. This provided the means to alter the perceived fitness of individuals. The study of 

how multi-population GP helps in maintaining phenotypic diversity was conducted in  [305]. 

In  [224], negative correlation was examined to improve diversity and prevent premature 
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convergence. A study to evaluate the influence of the parallel (GP) in maintaining diversity 

in a population was conducted in  [88]. 

A two-phase diversity control approach was proposed by  [326] to prevent the 

common problem of the loss of diversity in GP. The loss of diversity was prevented in the 

early stage through a refined diversity control (RDC) method with Automatically Defined 

Functions (ADF) and a fully covered tournament selection (FCTS) method. RDC was an 

extension to general diversity control (GDC), which passed the diversity check if two whole 

program trees, with the main tree and ADFs treated as a whole, were not exactly identical in 

genotype. RDC treated the main tree and ADF as individual objects and hence both were 

required to be unique for the diversity check to pass. FCTS was an extension to the standard 

tournament selection (STS). It was argued in  [326] that due to the randomness of STS, 

individuals with bad fitness may be selected multiple times, where an individual with good 

fitness may never be selected. FCTS avoided this issue by excluding individuals that had 

already been selected. The proposed methods effectively improved the GP’s performance 

resulting in the reduction of number of generations needed to reach an optimal solution and 

decreased incidences of premature convergence.  

5.6.4 Bloat and Code Growth 

Many researchers have highlighted the problem of bloat, which is the uncontrolled 

growth of the average size of an individual in the population. There exist numerous studies of 

code bloat in GP  [26] [155] [190] [226] [242] [290] [291] [325]. Three principal approaches were 

summarised in  [191] to prevent bloat, namely i) Limiting tree depth to some maximum value, 

ii) Using parsimony pressure, with the use of multi-objective (MO) methods and iii) 

Tailoring genetic operators such as size-fair crossover  [192]  [194] or fair mutation  [193]. 

In the standard GP this issue is indirectly dealt with by limiting individual tree’s 

maximal allowed depths. This can be viewed as unsatisfactory as this will require knowledge 
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of the maximum necessary depth in advance of solving the problem. The effects and biases of 

size and depth limits on variable length linear structures were explored using empirical and 

theoretical analyses in  [228].  It was argued in  [342] that the increasing size of trees would 

reduce the speed of convergence towards a solution and thus affect the fitness of the best 

solution. Consequently, the dynamic maximum tree depth was proposed to avoid the typical 

undesirable growth of program size. A technique was demonstrated in  [232], which 

significantly constrained the growth of solutions, i.e. bloat. This method imposed a maximum 

size on the created individuals within the population, which solely depended on the size of 

the best individual of the population. It was shown that the combination of depth limiting and 

methods which punish individuals based on excess size, were effective  [213]. 

One mechanism for limiting code size is the Constant Parsimony Pressure, where 

larger programs are penalised by adding a size dependent term to their fitness  [289]. This 

technique incorporated the program size as an additional constraint, but a hidden objective. 

The application of parsimony pressure was investigated in  [95] in order to reduce the 

complexity of the solutions. Their results reported that while the accuracy on the test sets 

were preserved for binary classification setup, the mean tree size was significantly reduced. 

Parsimony pressure has also been used in  [210]  [211] to fight Bloat. Parsimony pressure 

incorporated in a multi-objective framework has been used by many researchers 

 [270] [340] [341]. The use of multi-objective optimisation for size control was studied in  [59]. 

Multi-objective techniques in the context of GP were investigated in  [27] to reduce the 

effects caused by bloating. The inclusion of the tree size measure as one of the objectives has 

been found to be extremely effective at controlling bloat. It was shown in  [20] that mutation 

can be used to prevent population collapse, a phenomenon where the population in Multi-

objective GP rapidly degenerates to just trees of a single node because it tends to produce a 

positive mean increase in tree size per generation counterbalancing the parsimony pressure 
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exerted by the fitness-based selection process. In  [148], the functionality was first optimised 

and then afterwards followed by size (Ranking Method-Two Stage). The advantage of this 

was that pressure on size would not deter GP from discovering good solutions. This was 

because pressure is only applied when the individual has already reached the desired 

performance. However, bloating continued in solutions that had not attained the aspired 

performance. 

The genetic operators could be modified to address the problem of bloating such as 

Deleting Crossover in  [29]. In  [70], speed improvements were observed by removing introns. 

In  [255], the issue of too long solutions and bloat were addressed by Maximum Homologous 

Crossover (MHC). Equivalent structures from parents were preserved by aligning them 

according to their homology. MHC was tested on a symbolic regression problem and 

demonstrated its abilities in bloat reduction without inducing any specific biases in the 

distribution of sizes, allowing efficient size control during evolution. It was evident from the 

results that control of the size was possible while improving performance. The use of 

multiple crossovers was explored as a natural means to contain code growth  [294]. Multiple 

crossovers were performed between two parent trees, where the total number of crossovers 

occurring between the two selected parents is dependent on the sum of the sizes of the 

parents involved. Three similar multi-crossover algorithms were shown to be a viable choice 

for containment of code growth. 

It was argued in  [324] that a significant problem with GP was the continuous growth 

of individual’s size without a corresponding increase in fitness. A self-improvement operator 

(SI) was applied in combination with a characteristic based selection strategy to reduce the 

effects of code growth. Instead of simply editing out non-functional code the proposed 

method selected sub-trees with better fitness. The SI operator selects individuals that have at 

least one sub-tree that has a higher fitness value than its original tree (mother individual). 
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This will result in a fitter individual to replace a less performing individual with the reduction 

in depth and node count from its original tree. In other words, the sub-tree is upgraded to a 

new individual by removing the branches of the original mother tree. The performance of the 

proposed method was validated by testing it on a symbolic regression and a multiplexer 

problem showing a substantial reduction of code growth while maintaining the same level of 

fitness. It may be argued that the proposed approach is suitable for the above problems 

because they are simply and decomposable. 

It was claimed in  [336] that code bloat, slowed down the search process, destroying 

program structures, and exhausting computer resources. Non-neutral offspring (NNO) 

operators and non-larger neutral offspring (NLNO) operators were proposed to deal with 

these issues. An offspring could be considered as improved, neutral or worsened with respect 

to their fitness in comparison with their parents. The neutral offspring that are larger in size 

than their parents (LNO) could be further separated from those that are smaller in size than 

their parents (SNO). An LNO has more introns while an SNO has less. But they both have 

the same exon structure as their parents. It is argued that evolutionary processes favor LNOs, 

resulting in intron growth with no performance improvement. The proposed approach 

discarded all neutral offspring, named non-neutral offspring operators (NNO). Another 

approach, called non-larger neutral offspring (NLNO), kept SNOs and discarded only LNOs. 

Both approaches confined intron growth to different degrees. These two kinds of neutral 

offspring controlling operators were tested on two GP benchmark problems, namely 

symbolic regression and multiplexer problems to verify whether they could successfully 

apply parsimony pressure.  It was concluded that NLNO was only able to confine code bloat 

and simultaneously improve performance.  

It was shown in  [296] that by eliminating bloat the performance of GP could be 

improved. Some modifications to the selection procedures were presented to eliminate bloat 
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without deteriorating performance. The relationships of the bloat phenomenon with parallel 

and distributed GP has been investigated by many researchers and positive results have been 

obtained, where the bloat phenomenon could be controlled by parallelizing GP  [76]  [96]. It 

was shown in  [63] that the parallel evolutionary model, specifically the island model, helped 

to prevent the bloat phenomenon. 

A simple theoretically-motivated method for controlling bloat was introduced in 

 [258], which was based on the idea of dynamically and strategically creating fitness "holes" 

in the fitness landscape repelling the population. These holes were created by zeroing the 

fitness of a certain proportion of above average length offspring. This meant that only a fixed 

proportion of offspring, those which violated the length constraints, were randomly 

penalised.  

Three methods for bloat control were presented in  [252], Biased Multi-Objective 

Parsimony Pressure (BMOPP), the Waiting Room, and Death by Size. BMOPP was a 

variation on the pareto-optimisation theme which combined lexicographic ordering, pareto 

dominance and a proportional tournament. The latter two methods do not consider parsimony 

as a part of the selection process, but instead penalise for parsimony at other stages in the 

evolutionary process. In the Waiting Room, newly created individuals were only permitted to 

enter the population after having sat in the “waiting room” or queue for period of time 

proportional to their size. This provided smaller individuals a greater opportunity to spread. 

Death by Size chose individuals to die and be replaced based on their size.  

Parsimony pressure is traditionally used to reduce the complexity of solutions. In 

 [297] however, a negative parsimony pressure was applied for a financial portfolio 

optimisation problem in GP, preferring complex solutions rather than simpler ones. Negative 

parsimony pressure presumed that the principle of Occam's Razor inhibits evolution  [297]. 
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Favourable results were shown where in some instances it was better to apply negative 

parsimony pressure. 

Recent studies support the hypothesis that introns emerge predominantly in response 

to the destructive effects of the variation operators. Although, it may be argued that introns 

can be considered as useful because they protect good building blocks, nevertheless it can at 

the same time run the entire population into stagnation due to bloat, which is the explosive 

and exponential growth of introns. In this instance, no feasible improvements can be 

observed as the population is merely exchanging introns during recombination. A potential 

future direction within this area would be the formulation of more efficient variation 

operators or methodologies that can reduce the destructive nature of existing operators. 

5.7 GP Variants and Hybrids 
 

It should be noted that this work is focused on the canonical GP and does not delve 

into the other variants and hybrids. A very brief summary and introduction to GP variants 

and hybrids is included (this section) to introduce the reader to these new GP variants in the 

hope that it may lead to insights or clues for possible ideas that may guide future 

improvements in canonical GP.  

Variants of GP are differentiated by their different structures  [112]  [170]. There are 

many different genetic programming (GP) structures such as tree, linear and graph structures 

with many other forms of representations being investigated and continuously emerging. For 

example, in  [149] a new kind of GP structure called linear-tree-structure together with its 

own crossover and mutation operations was introduced. A novel Genetic Parallel 

Programming (GPP) paradigm, with a Linear Genetic Programming representation, was 

introduced in  [201]  for evolving parallel programs. It was observed that parallel programs 

were more evolvable than sequential programs. In  [40] considerable speed up in evolution 
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was observed using the GPP paradigm, running on a Multi-Arithmetic-Logic-Unit (Multi-

ALU) Processor (MAP) evolving parallel programs and then serializing them into a 

sequential program.  

A low level modularisation strategy, called compressed GA (cGA), was presented for 

linear genetic programming based on a substring compression/substitution scheme. The 

purpose was to protect building blocks and foster genetic code reuse. There are many more 

other variants explored by various researchers such as the Gene Expression Programming 

(GEP), Gene Estimated Gene Expression Programming (GEGEP) an extension to GEP  [68], 

Multi niche parallel GP  [97], directed acyclic graphs (DAGS)  [103], parallel Automatic 

Induction of Machine Code with Genetic Programming (parallel AIM-GP)  [245], Genetic 

Network Programming (GNP)  [115], Grammar Model-based Program Evolution (GMPE) 

 [137] and many others  [16] [136]  [207]  [276]. There are also many various hybrids that have 

been researched, such as genetic programming neural network (GPNN)  [265]  [266], Ant 

Colony Programming  [31], traceless genetic programming (TGP)  [249]. Many researchers 

have looked into improving the newly proposed hybrid. For example, in  [31] the problem of 

eliminating introns in Ant Colony Programming (paradigm based on Genetic Programming 

and Ant Colony System) was investigated. Some of the GP Variants are shown in Figure  5.6. 

 

 

 

 

 

 

Figure  5.6 Some of the GP variants 
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5.7.1 Linear Genetic Programming 

Linear GP makes use of linear phenome, which is a chain of instructions executed 

from left to right or top to bottom.  

 

Figure  5.7 A tree structure phenome versus a linear phenome 
 

The linear program and the tree program in Figure  5.7 are identical. In this figure, the 

first instruction is c = c – b. The effect of this instruction is to subtract the value in register b 

from register c and to place the result in register c. There are several linear GP systems, all 

sharing the same characteristic of the tree representation being replaced by a linear 

chromosome. Linear GP resembles conventional GA with the exception of the chromosome 

length being allowed to evolve, resulting in individual programs of different sizes. Each 

chromosome is a list of program instructions executed in sequence. Linear GP systems are 

typically divided into three groups: stack based, register based and machine code. Each 

program instruction takes its arguments from a stack in the stack-based GP  [253], and then 

performs its calculation pushing its result back onto the stack. Machine code and register 

based genetic programming are comparable in that instructions are read and written from/to 

registers (see Figure  5.8). Their main difference is that in the machine code GP the 

instructions are real hardware machine instructions whereas in the register-based GP, 

programs are interpreted or compiled before execution. 
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Figure  5.8 A sample program in register based GP 
 
 

5.7.2 Grammar-Guided Genetic Programming 

Grammar-guided genetic programming (GGGP) is an extension to standard GP with 

the aim to address the closure problem and simplify the search space  [184] [319]  [321]. 

GGGP employs a context-free grammar (CFG) establishing a formal definition of the 

syntactical restrictions. Individuals are derivation trees that represent solutions belonging to 

the language defined by the context-free grammar  [315]. GGGP always generates valid 

individuals (points or possible solutions that belong to the search space). In   [316] the 

influence of program grammars on the efficiency of GP was described. In  [335] a new 

method of representing based on CFG was used to separate search space from solution space 

through a genotype to phenotype mapping and this technique was applied to a symbolic 

regression problem showing improvement over a basic GP without a grammar. In  [346] 

extensions to the operators were made to improve grammar-based evolutionary algorithms.  

Many other variants of GGGP have also been investigated. For example in  [116] 

 [117], a new grammar guided genetic programming system called tree-adjoining grammar 

guided genetic programming (TAG3P+) was proposed. It is argued in  [236] that standard GP 
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is unable to search for all tree shapes, namely solutions that require very full or narrow trees. 

A different tree-based representation was used by  [236] together with new local structural 

modification operators (point insertion and deletion) to eliminate this problem. The new 

representation was based on tree adjoining grammars (TAGs), which were first proposed in 

 [145], to remove the fixed-arity limitation of standard GP. 

5.7.2.1 Initialisation 

A new initialisation method was introduced for GGGP in  [41]. Random Branch tree-

generation algorithm  [41] guaranteed the generation of trees of requested size. However, this 

algorithm could not produce a well distributed set of trees, thus resulting with a negative 

impact on the convergence speed  [105]. The Uniform Tree Generation algorithm  [30] 

guaranteed the uniform creation of trees of requested tree size but was known to be too 

complex  [98]. The Grow algorithm was modified in PTC1 and PTC2 to ensure that the trees 

were generated around an expected size  [209].  

A new tree-generation algorithm for GPPP, grammar-based initialisation method 

(GBIM), was proposed in  [98]. A parameter was included to control the maximum size of the 

trees to be generated and thereby the initial populations generated were distributed in terms 

of tree size. It was shown that the proposed method had a higher convergence speed when 

compared with Ramped Half-and-Half, Basic, Random Branch, Uniform and PTC2 tree 

generation algorithms for an arithmetical equalities problem and the real-world task of breast 

cancer prognosis. 

5.7.2.2 Variation Operators 

The strong context preservative crossover operator (SCPC) was proposed in  [50] to 

preserve the context in which the sub-trees occur in the parent trees and control the code 

bloat. Nodes with matching coordinates (see Figure  5.9) can be selected as crossover points 

in SCPC. In this figure for example, (2,1,3,1,2) would be the node by taking the 2nd branch 
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counting left to right at the root of the tree, then take the first branch at that level, then the 

third branch there, then the first and finally the second. A node's position can therefore be 

described by a tuple of n coordinates T = (bl, b2, ..., bn), where n is the depth of the node in 

the tree, and bi indicates which branch to choose at level i. In other words, the crossover is 

restricted to nodes that reside in similar contexts within the individual. In this case, emphasis 

was placed on the genotype of the individual (locations of the nodes), not the phenotype.  

 

 

 

 

 

 

 

 

 

 

Figure  5.9 Tree coordinates 
 

Crossover in GP has been blind  [112] in contrast to biological crossover, where 

chromosomes exist with a matching and aligned homologous partner, in a process referred to 

as meiosis. The Fair crossover operator  [48] was designed to prevent code bloat, which is a 

modified version of the operator proposed by Langdon  [192]. Two original genetic operators, 

crossover and mutation, were proposed in  [47] for the grammar-guided genetic programming 

(GGGP) paradigm. The grammar-based crossover operator (GBC) improved the GGGP 

performance, by providing a good balance between search space exploration and 
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exploitation. The grammar-based mutation (GBM) operator generated individuals that 

matched the syntactical constraints of the CFG that defined the programs. The proposed 

operators were tested in two experiments demonstrating a higher convergence speed and a 

lesser likelihood of being trapped in local optima.  

A new grammar-based crossover (GBX) operator was introduced in  [217] for the 

grammar-guided genetic programming system to prevent code bloat. Moreover, GBX 

provided trade-off between exploration and exploitation of the search space. Grammatical 

Evolution (GE) is an extension of GP and evolves complete programs by using a Backus 

Naur Form (BNF) grammar or style of notation. Various different crossover operators were 

proposed in  [106]  [107] and in  [108] a meta-grammar was introduced into GE allowing the 

grammar to dynamically define functions. 

5.7.3 Parallel Genetic Programming 

The measurement and computation of population fitness consumes a large amount of 

computational effort and is generally considered time-consuming. Many researchers have 

looked into distributing the computational effort needed to calculate fitness, hence 

Parallelizing GP which is frequently the focus of the parallel computing community. In 

addition, many researchers have investigated the spatial distribution of GP models. The two 

fields of parallel GP and spatially-distributed GP models had different goals. The main goal 

for parallel GP was often to speed up computation of the fitness evaluations, by either having 

each individual or some subpopulation evaluated on a separate processor. In this instance, the 

population as a whole was often treated as a panmictic population. The spatially-distributed 

GP constructed some form of spatial structure with the intention of maintaining diversity, 

which could be executed on the same processor or multiple processors.  
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Two basic approaches to parallelisation were discussed in  [170]. In Distributed GP 

the population is divided into sub-populations (island model), each assigned to a processor 

(Figure  5.10).  

 

 

 

 

 

 

 

Figure  5.10 Distributed GP with 4 islands 
 

The Distributed GP can be implemented on a network of workstations or a parallel 

computer where the GP operates on each sub-population separately. A specified percentage 

of individuals within each sub-population are selected for migration after a certain designated 

number of generations. There are many variations of distributed models such as demes, 

islands and niching methods. Figure  5.11 Shows a ring and a lattice stepping stone model. 

 

 

 

 

 

 

 

Figure  5.11 Stepping Stone Model as ring and lattice 
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For example, in the island method a population P of M individuals is divided into N 

subpopulations (called demes) D1, …,DN of M/N individuals. A standard GP works on each 

deme and the subpopulations are interconnected according to various communication 

topologies and information is periodically exchanged by migrating individuals from one 

subpopulation to another. As a result various new parameters such as the number of 

subpopulations N, number of individuals to be migrated (migration rate), the number of 

generations after which migration should occur (frequency) and the migration topology are 

needed in this methodology.  

The first to analyze the behavior of distributed GP with respect to sequential GP was 

Punch  [262]. In the second approach, there are no sub-populations or migrations, where steps 

are executed locally and asynchronously on a distributed basis. The independent algorithm 

tasks are distributing to separate processors.  

 

 

 

 

 

 

 

 

 
Figure  5.12 Parallelisation at the level of fitness cases  [170] 

 

Koza described three levels of parallelisation for the determination of fitness, at 
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Figure  5.13 Parallelisation at the level of independent runs  [170] 

 

In  [7], each processor was responsible for the fitness evaluation and breeding of a 

sub-population increasing the efficiency of GP. It was hypothesised in  [305] that distributed 

GP outperforms the panmictic GP due to maintaining diversity. In  [182] it was argued that 

increases in computational power can be realised by parallelizing the application. The 

parallel implementation of GP on a network of processing nodes was described in  [8] that 

achieved super-linear performance.  

In  [261] multi-populations were examined and in  [76]  [80] various control parameters 

for multi-population models were systematically studied. In  [203] layered genetic 

programming (LAGEP) was proposed based on multi-population genetic programming 

(MGP). This method employed layer architecture to arrange multiple populations. A layer 

contains a number of populations. In addition, an adaptive mutation rate tuning method was 

proposed to increase the mutation rate. LAGEP achieved comparable results to single 

population GP in much less time. The GP was used with several isolated subpopulations, 
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where the individuals among the several populations were not allowed to communicate  [77]. 

This methodology was referred to as Isolated Multipopulation Genetic Programming 

(IMGP). It was shown that although IMGP was not always helpful in obtaining better results, 

in some instances better results were obtained than in the classic method. A divide and 

conquer strategy was introduced to increase the probability of success in GP  [85], where the 

search space was partitioned in smaller regions that were explored independently of each 

other.  

A fine-grained parallel implementation of GP through cellular model on distributed-

memory parallel computers with good performances was presented in  [88]. In the fine-

grained (grid) model, also called cellular, each individual is associated with a spatial location 

on a low-dimensional grid, interacting only with their direct neighbours. Different 

neighbourhoods can be defined for the cells. Some examples of the two-dimensional (2-D) 

neighbourhoods are the 4-neighbor (von Neumann neighborhood) and 8-neighbor (Moore 

neighborhood).  

Various researchers have also attempted to make improvements to the canonical 

parallel evolutionary algorithms, e.g. in  [101] the Speciating Island Model (SIM) was 

explored. In  [76]  [77] the aspect of population size was investigated for the multi-population 

Parallel Genetic Programming. It was discovered that an optimal range of values exists to 

speed up the search for solutions. In  [82], the plague operator was used to enhance the 

performance of parallel GP (based on the island model). Individuals were removed every 

generation, altering the population size. This compensated for the increase in size of 

individuals and hence saved computational effort. Changing population size was also 

investigated for distributed GP in  [269] to reduce bloat. It was shown that by keeping their 

size as small as possible and the amount of resources needed was decreased. There have been 
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many other approaches in parallelizing GP  [67]  [146]  [240] [250]  [277] [301]. An extensive 

survey on the subject can be found in  [304]. 

5.7.4 Graph Genetic Programming 

In Graph Genetic Programming (GGP) system the GP operates on graphs. In  [238], 

the notion of graph isomorphism was discussed and it was empirically shown how using a 

canonical graph indexed database (fitness database) can improve the performance by 

reducing the number of fitness evaluations and thus saving considerable evaluation time.  

5.7.5 Cartesian Genetic Programming 

A new form of GP called Cartesian Genetic Programming (CGP) was introduced in 

 [230] in which programs were represented as indexed graphs (rather than as parse trees), 

encoded in the form of a linear string of integers. In  [323], the CGP programs were 

represented as directed acyclic graphs (DAGs), enabling outputs from previous computations 

to be reused. An implicit context representation for CGP was described in  [36] showing the 

beneficial effects of recombination to outperform the conventional Cartesian GP. The 

computational efficiency of graph-based Cartesian Genetic Programming was described in 

 [231]. The Cartesian genetic programming was extended by utilizing automatic module 

acquisition in  [312]. 

5.7.6 Page-based Genetic Programming 

Page-based GP  [241] is a linearly structured GP (L-GP), where individuals take the 

form of a “linear” list of instructions. A Page-based linear genetic programming (GP) was 

proposed in  [112]  [113] where individuals were described in terms of a number of pages. It 

was shown that page-based linear GP evolves solutions better than the block-based linear GP 

 [244]. 
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5.7.7 Other Representations 

The performance of GP was improved by using a data structure coded by binary 

decision diagrams (BDDs), reducing storage requirements and accelerating the fitness 

calculation  [331]. BDDs are a compact representation of Boolean functions using directed 

acyclic graphs. The entire population was stored as a shared BDD and all genetic operations 

and fitness calculations were performed on the BDD. This technique is suitable for problems 

where only Boolean variables and functions are involved.  BDD-based GP is not practical for 

problems where real variables, such as symbolic regression are used. Nevertheless, it can also 

be used for integer-based programs by encoding the integers as binary vectors. New 

crossover, mutation and evaluation algorithms were developed for BDD  [331].  

A technique to reduce the time and space requirements of GP was proposed in  [103]. 

The population of parse trees was stored as a directed acyclic graph (DAG). However, it was 

stated that this technique cannot be applied to all problems due to restricted program 

encoding and bounded fitness cases, such as the Artificial Ant and Cart Centering problems. 

The number of nodes stored and evaluated was reduced by a significant factor resulting in 

less space requirements to store a population of computer programs. In addition, time savings 

were also observed as a result of caching. In the standard sub-tree crossover it is difficult to 

make changes near the root, occasionally causing runs to become trapped in local maxima. 

Based on these structural limitations a different tree representation, AppGP, was proposed 

 [91]. The representation of trees and the tree manipulation algorithms were modified in 

AppGP. All non-terminal nodes were represented as application (APP) nodes and the AppGP 

representation had more nodes than the standard GP representation, providing more potential 

points for the application of recombination operators. It was shown that on all of the test 

problems, AppGP did no worse than standard GP, and in several instances it outperformed 

standard GP. 
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5.7.8 Memetic Algorithms - Hybrids 

Researchers have attempted to capitalise upon the strategies of other methods by 

incorporating them into an enhanced version of GP that outperforms the canonical GP. The 

GA-P  [123], which is a genetic algorithm and genetic programming hybrid, performed 

symbolic regression by combining the conventional GA function optimisation strength with 

the GP paradigm to evolve complex mathematical expressions. The GA-P was extended in 

 [278]. A genetic algorithm (GA) was embedded into a genetic programming (GP), where 

each paradigm operated at different levels within the problem domain  [37].  

The genetic programming paradigm was hybridised with statistical analysis in  [1] to 

derive systems of differential equations. A framework for combining GP and inductive logic 

programming (ILP) was proposed in  [320]. A memetic algorithm was proposed in  [35] 

evolving heterogeneous populations, in which a GA was used to optimise the numeric 

terminals of programs evolved using GP. The GP algorithm was hybridised with hill 

climbing and the nature of new crossover algorithms, crossover hill climbing (XOHC) and 

crossover with Simulated Annealing (XOSA), was investigated  [246]. It was shown that the 

hybrids offer added search power and hybridizing GP with hill climbing yields better results 

than the standard GP.  
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CHAPTER 6 

 

6 POPULATION VARIATION  
 
 
 
“Ideas are like stars: you will not succeed in touching them with your hands, but like the seafaring 
man on the ocean desert of waters, you choose them as your guides, and following them, you reach 
your destiny.”, Anatole France. 
 
 
 
 
 
 
 
 
 
 

6.1 Preliminary Discussions 
 

Genetic Programming, like other approaches in Evolutionary Computation, is 

normally computer processing intensive and therefore special methods are necessary in order 

to increase or enhance its performance. The main drawback of GP has been this often large 

amount of computational effort required to solve complex problems. Researchers have 

investigated various methods for overcoming this problem. This issue of computational effort 

was addressed in  [154] by introducing a number of different methods for improving GP 

execution time. While such investigations were mainly focused on the design and realisation 

of the GP platform from a software implementation point of view, many other researchers 

have considered techniques to improve efficiency from the GP paradigms perspective. A 

wide number of different techniques for improving the efficiency of GP have already been 

proposed. Some of these include the development of the Automatic Defined Function (ADF) 
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methodology  [173] [174] used to improve the GP search efficiency and the brood 

recombination operator  [299], which was introduced as a substitute for the Standard Genetic 

Programming (SGP) crossover. Other efficiency techniques have also been proposed such as 

partitioning the search space into smaller regions  [85], parallel implementation of GP  [8] and 

bloat control methods to reduce tree size [213]. The role of population size in GP was first but 

very briefly studied by Koza  [170]. In his study, the 6-multiplexer problem was solved using 

various population sizes. The study concluded that a larger population size M, for generations 

between generation 0 and generation i, increased the cumulative probability P(M,i) of 

satisfying the success predicate of a problem for GP. The population size was maintained at a 

constant level and was not varied throughout the run. The plague operator was then 

introduced by Fernandez  et al.  [79] to fight bloat, which many argue is a phenomenon 

commonly observed when algorithms use variable size chromosomes (data structures). 

Plague was defined as an operator that suppressed the population by removing a fixed 

number of individuals from the population at each generation g. It was shown that a given 

fitness level could still be reached with a smaller computational effort by removing 

individuals at a linear rate. In  [164], Kouchakpour et al. carried out a study on the effects of 

population variation conducted during the run of the GP paradigm and investigated whether 

the nature of the “population variation”, i.e. the way the population is varied, has any 

significant impact on GP performance. The proposed general population variation scheme is 

known as Population Variation (PV) and some of the variants of this scheme are investigated 

in this chapter. The performance of the plague operator is also discussed and compared with 

that of the proposed population variation scheme.  
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6.2 An introduction to Population Variation 

In genetic programming a population or a set of solution points undergo adaptation 

simultaneously. It is believed that population control plays a significant role in the success of 

these algorithms  [170]. Consequently, a generic technique called Population Variation (PV) 

is proposed with the main aim of reducing computational effort and to possibly accelerate 

convergence towards a solution, where convergence is defined as the GP approaching a 

solution with a desired fitness. The parameter λ is defined as the required Average number of 

Evaluations to a Solution (AES) before a successful termination. In addition, a small AES is 

defined to represent fast convergence and large AES slow convergence. The computational 

effort is measured as the total number of individuals evaluated in one run of the GP. In the 

classic GP (Standard GP, SGP), the population remains constant during the run and hence the 

Population-Generation profile P(g), which is the total number of individuals (or the 

population size) at any generation g, is described graphically by a horizontal line with a y-

intercept of M (population size), as depicted in Figure  6.1. The generation number “g” ranges 

from 0 (the initial generation containing the initial random population) to G, which is the 

maximum number of generations to be run.  

 

 
 
 
 

Figure  6.1 Population profile in SGP 
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Using our definition, the Computational Effort per run ε can be computed according 

to (6.1) as the sum of the Population-Generation profile over all generations, which is 

equivalent to the total number of evaluations, which can be approximated by using 

integration. 

∫∑ ≈=
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In  [79], plague was used to indirectly fight bloat, by reducing population size. The 

computational effort at a given generation g was defined as the total number of nodes 

evaluated from generation 1 to generation G. It is believed that this viewpoint of 

computational effort is at a microscopic level and is not necessary for the following two 

reasons. Firstly, given today’s computer power, the nodes which are extraneous due to bloat 

have very little impact on the total computational effort. In Figure  6.2, two individuals are 

shown that produce the same fitness but one is longer in length due to bloat. It is believed 

that bloat should at worst case, if any, be considered a hindrance to finding a solution but not 

a burden on computational effort.  

 

Figure  6.2 Two successful trees, Tree A contains introns 
 

Secondly, it should be noted that the tree length, i.e. the number of nodes in a 

genotype, in general does not have to correlate with the computational effort required to 

evaluate the corresponding phenotype. For instance, consider a genetic program being used 

for driving a mobile robot, where language tokens are used for driving or turning a robot. The 

Tree A Tree B
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evaluation of such a driving token may be in the order of 1000 times more computationally 

expensive than some arithmetic token. No meaningful correlation between tree length and 

evaluation time exists if an iteration construct exists in the GP language. Consequently, a 

program’s length does not allow any conclusion about its run-time.  For the above two 

reasons, the calculation of computational effort is based on the number of individuals that are 

required to be evaluated in one run of the GP as defined by (6.1). The main goal of the PV 

scheme is to minimise computational effort such that the computational effort of the PV 

scheme PVε  is better than or in the worst-case equal to the computational effort of SGP SGPε , 

expressed in the following manner.  

SGPPV εε ≤        (6.2) 

The worst-case upper limit per run for the computational effort of the Population 

Variation scheme ∫∑ ≈=
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This upper limit ensures that the computational effort for an unsuccessful run in the 

PV scheme will never exceed that of the SGP. It also ensures that at worst the PV scheme 

performs equally well as does a SGP, as far as computational effort to the end of an 

unsuccessful run is concerned. At the same time, it is hoped that the population variation 

scheme outperforms the SGP for a successful run, i.e. SGPPV εε < .  

One of our innovations called Population Variation Linear Reduction (PV-LR), 

described in the next section, has a lot of similarities with the plague operator but at the same 

time has some major differences providing more benefits. The PV-LR is constrained to a 

worst-case computational effort scenario equal to that of the SGP per run. It begins with a 
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much larger initial population than the SGP to increase its population diversity at birth as 

compared with the SGP. In contrast, the plague operator approach starts off with the same 

population as the SGP. The results, which were reported for the plague operator in  [79], 

indicated an improvement over the SGP however the study used a very large initial 

population size for the SGP. To illustrate, the study used 5000 and 10000 individuals for both 

the artificial ant problem and the even parity problem. On the other hand, the study 

conducted in  [170] used an initial population size of only 500 for the artificial ant problem 

and 4000 for the even parity problem.  It is believed that this is not a valid comparison, as the 

plague operator should have been compared with a SGP at its optimal or at least close to 

optimal starting population size. There is a point after which the cost of a larger population, 

in terms of computational effort, begins to outweigh the benefit it introduces. This 

observation was also made in  [170], that after a point the cost of a larger population (in terms 

of individuals to be processed) exceeded the benefit it obtained from the increase in the 

cumulative probability P(M,i) of satisfying the success predicate. Consequently, the plague 

operator approach will also be investigated in this chapter and compared it with a SGP at its 

near-optimal population size. 
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6.3 Population Variation Variants 

In this section some different variants of PV are discussed and investigated. These are 

Population Variation Reduction (PV-R), Population Variation Increment (PV-I) and Random 

Population Variation (PV-RAN).  

6.3.1 Population Variation Reduction Scheme 

The rationale behind the population reduction is that by increasing the initial 

population size to a much larger value than the initial population size of a SGP (i.e. PPV(0) >> 

PSGP(0)), the population diversity is increased. That should in turn aid in the acceleration of 

convergence towards a solution (in terms of number of generations produced) at the initial 

stages of the GP run. The reduction is required to progress in such a way that the 

computational effort at the end of the run is equal to that of a SGP.  

The PV-R scheme deploys the following algorithm. Given the set of trees T = {T1, T2, 

T3, … ,TM}, which form the M individuals in a population at generation g, sorted according to 

fitness f(T1) ≤ f(T2) ≤ f(T3)  ≤ … ≤ f(TM), where f is the fitness function, the k worst trees from 

a fitness point of view are removed at each generation. This elimination policy ensures that a 

good value of fitness is maintained across the populations since best performing trees are not 

suppressed. The Population Variation Linear Reduction (PV-LR), PV Step Reduction (PV-

SR), PV Quadratic Reduction (PV-QR), and PV Exponential Reduction (PV-ER) belong to 

the family of PV-R schemes investigated in this chapter.  

In PV-LR, the population is altered linearly by using the relationship defined as, 

)0()( PVPgmgP +×=      (6.4) 

where m (m<0) is the rate of linear suppression and can be derived using (6.3). The rate of 

linear suppression m, is defined by (6.5). 
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( )
G

PP
m PVSGP )0()0(2 −×
=      (6.5) 

In PV-ER, the population is altered using a negative exponential function 

approaching an asymptote of ρ as defined by (6.6). 

( ) ρ+= ×−e gm
PVPgP )0()(      (6.6) 

Similarly, using (6.3) it can be shown that the rate of exponential suppression m is 

directly related to the asymptote ρ as shown below. 

( )( ) )0(1
)0(

SGP
GmPV Pe

G
P

=+−
×

×− ρ
ρ

    (6.7) 

In PV-QR, the population is altered quadratically by using the relationship defined by (6.8) 

with the coefficients a and b defined by (6.9). The parameters defined for PV-SR are given in 

Appendix H.  A sample population profile of these reduction schemes are shown in  

Figure  6.3. 

0,)0()( 2 >∨ℜ∈++−= abaPbxaxgP PV    (6.8) 

bGaGPSGP 32)0(6 2 +−=×      (6.9) 

 

 
 
 
 
 
 
 

Figure  6.3 Population Profile-Population Variation Reduction 
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6.3.2 Population Variation Increment Scheme 

In the PV-I scheme, we start off with an initial population size smaller than that of the 

SGP (i.e. PPV(0) << PSGP(0)),  and increase the population as the generations progress. The 

PV-I scheme deploys the following algorithm for increasing population size. Given the set of 

trees T = {T1, T2, T3, … ,TM}, which form the M individuals in a population at generation g, 

sorted according to fitness f(T1) ≤ f(T2) ≤ f(T3) ≤ … ≤ f(TM), where f is the fitness function, 

the k best performing trees from a fitness point of view are selected and mutated at each 

generation. These mutated individuals are then added to the next generation. In this chapter 

one variant of PV-I is investigated, namely the Population Variation Linear Increment (PV-

LI) as shown in Figure  6.4, satisfying (6.3). 

The motivation behind this idea is that initially a large population size is not as 

effective as having a larger population size after the individuals have evolved and have a 

higher fitness value. It is believed that the increase in population and diversity at this time 

could play a more significant role than an increase in population size initially where the 

majority of the individuals are performing poorly. As generations proceed, the population 

size is incremented to a much larger value than the initial population size of a SGP (i.e. 

PPV(G) >> PSGP(G)). The increase is performed in such a way that the computational effort at 

the end of the run is equal to that of a SGP. 
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Figure  6.4 Population Profile SGP versus PV-LI 
 

6.3.3 Random Population Variation 

In the PV-RAN scheme, the population is randomly altered around a mean value (μ = 

PSGP(g)) within a minimum and maximum range (Pmin ≤ PPV(g) ≤ Pmax), as shown in Figure 

 6.5. Due to the randomness of the population variation it is expected that (6.3) will hold. The 

incentive of this study is to see whether any kind of arbitrary population variation can result 

in performance improvements over SGP.   

 

 
 
 
 
 
 

Figure  6.5 Population Profile SGP versus PV-RAN 
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6.4 Applications 

The PV study within this chapter is based on four representative problems that have 

been classically used for testing GP, namely the symbolic regression problem, digital logic 

problems such as the parity problem and the Boolean symmetry problem, the sequence 

induction problem and the artificial ant problem. For each problem, the hypothesis is tested 

on two different landscapes. In most instances, the first landscape is more complex and the 

second landscape is a simplified variant of the first landscape. Following are brief 

descriptions of each problem. 

6.4.1 Symbolic Regression Problems 

In science and engineering, it is often required to determine the rule or function fit for 

a set of analytical data which is obtained from experimentation. Problems of identifying a 

mathematical expression that relates the independent variable to the dependant variable for a 

given finite sampling interval are defined as symbolic regression problems. In this study, the 

sample of data shown in Figure  6.6 is used. 
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Figure  6.6 Sample data used as input for the regression problems 1 and 2 
 

The first problem is best solved by a degree-4 polynomial as defined by (6.10) and the 

second problem is best solved by a cubic polynomial as defined by (6.11). 

[ ]2,1,5.15.1)( 34 ∈++= xxxxxf    (6.10) 

[ ]3,2,)( 23 −∈++−= xxxxxg    (6.11) 

The inputs for both problems are composed of 20 equidistant points within the 

defined domains and the terminal set used for these problems is T ={X} and the function sets 

are given by F ={+,×, -,%} , where % is the protected division operator defined by (6.12) to 

ensure the closure property. The symbols a and b are simply variables that can take real 

values. The defined terminal and function sets will satisfy the sufficiency property.  
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Problem 1 is an example of symbolic regression with constant creation due to the presence of 

the coefficients in the target expression. As there are no ephemeral random constants in the 

terminal set, GP arbitrarily creates these constants. The fitness is defined as the sum of the 

absolute difference between the fitness case and the output of the GP. 

6.4.2 Digital Logic Problems 

6.4.2.1 Even Parity 4 Generator (Odd Parity 4 Checker) 

One of the major concerns in data-handling systems, such as in digital transmission 

systems, is to avoid data transmission errors. The simplest approach to reducing the 

probability of error is to introduce the parity check, where the even parity k generator (Odd 

parity k checker) function ƒ(X1, X2, X3, …,Xk) with k Boolean arguments returns true (binary 

1) if an odd number of its Boolean arguments evaluates to true, otherwise it returns false 

(binary 0). Herein the Even Parity 4 generator (Odd Parity 4 Checker) problem is used with 

k=4 and 24=16 fitness cases. The fitness is computed as the number of hits over the fitness 

cases. Thus a perfect individual has a fitness of 16 and the worst individual has a fitness of 

zero (0). The terminal set is composed of four different Boolean variables T = {X,Y,Z,W} and 

the function set is given by F = {NAND,NOR}. 

6.4.2.2 Boolean 6-Symmetry Problem 
 

The Boolean symmetry function is often used as a benchmark in the fields of neural 

networks and machine learning. The Boolean symmetry function g(X1, X2, X3, …,Xk)  with k 

Boolean arguments returns true if its Boolean arguments are symmetric. Symmetry is 

determined by verifying that the first argument matches the kth argument, the second 

argument matches the k-1th argument etc. Herein, the Boolean 6-Symmetry Problem is used 

with k=6 and 26=64 fitness cases. Fitness is calculated as the sum over the fitness cases of the 

Hamming distance between the value returned by the program and the correct value of the 

symmetry function. The terminal set is composed of six different Boolean variables T = 
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{X,Y,Z,W,K,P} and the function set contains the AND, OR and Equivalence (exclusive-NOR) 

logic operations and is given by F = {AND,OR,XNOR}. 

6.4.3 Sequence Induction Problems 

Induction has been widely viewed as an important component of human intelligence. 

Sequence induction involves discovering a mathematical expression that generates any 

arbitrary element in an infinite sequence }{},,,,{ 3210 JTTTTTT == K . Recursive and a simple 

sequence induction problems have been investigated as described below.   

6.4.3.1 Recursive Sequence Induction 

Recursive sequence induction is a sequence induction where the target function is not 

a straightforward function of the index position J of the sequence. The well-known 

monotonic divergent Fibonacci sequence is used in this problem, which is computed using 

the recursive expression 21 −− += JJJ TTT  with 110 == TT . The terminal set is composed of the 

index position J and four small integers 0, 1, 2 and 3, therefore, T = {0, 1, 2, 3, J}. The 

function set is given by F ={+,×, -,SRF}, where SRF (Sequence Referencing Function) 

provides a facility to refer to previously computed indices less than J. To illustrate, the sub-

expression ),( dnSRF at index position J returns the value of the previously computed nth term, 

provided 10 −≤< Jn  and otherwise it returns the default of d. It should be noted that the 

Sequence Referencing Function returns the value computed by the current symbolic 

expression not the actual correct value of the Fibonacci sequence. Fitness cases for this 

problem consist of the first 20 elements of the Fibonacci sequence. The fitness is computed 

as the sum of the absolute difference between the sequence value produced by the symbolic 

expression and the actual Fibonacci sequence.  

6.4.3.2 Simple Sequence Induction 

A simple sequence defined as T={6,11,18,27,38,…,402,443,…} is used for the 

second problem. The terminal set is defined as T = {0, 1, 2, J} and the function set is given 
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by F ={+,×, -}. Fitness cases for this problem consist of the first 20 elements of the given 

sequence. 

6.4.4 Artificial Ant Problem 

Jefferson et al.  [143] first devised a planning task involving an "artificial ant" 

attempting to traverse an irregular trail and successfully used the conventional string-based 

genetic algorithm to discover a finite state automaton enabling the "artificial ant" to traverse 

the trail. This involves the task of navigating an artificial ant to find all the food lying along 

an irregular trail. The first landscape used is the “Santa Fe trail”, which is an irregular 

winding trail consisting of 89 food pellets on a 32×32 two-dimensional toroidal grid in the 

plane, with the ant located in the top left corner facing east.  

O

 

Figure  6.7 Santa Fe trail for the artificial ant 
 

This trail is neither straight nor continuous, but contains single and double gaps and 

single, double and triple gaps at corners as shown in Figure  6.7. The gaps are indicated with a 

grey shade. The ant, indicated by a circle, is located in the top left corner facing east. The 

second landscape, which is considered a scaled-up version of the Santa Fe Trail, is the “Los 

Altos Hills trail”. It consists of 157 food pellets on a 100×100 two-dimensional toroidal grid 
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in the plane with varying discontinuities in the sequence of food pellets. Figure  6.8 shows 

part of the Los Altos Hills trail (upper left 50×70 grid). 

 

Figure  6.8 Los Altos Hills trail for the artificial ant 
 

The artificial ant has a very limited view of its world. In particular, it has a sensor that 

can only see the single immediately adjacent cell in the direction it is currently facing. Here, 

the ant’s goal is to traverse the entire trail and eat all the food within a reasonable amount of 

time. The function set consists of the IF-FOOD-AHEAD conditional branching operator and 

the two argument connective function for the Santa Fe Trail. The ant has been limited to 400 

time steps in the first landscape. Hence, F ={IF-FOOD-AHEAD,PROGN}. The terminal set 

consists of the primitive functions to change the state of the ant, namely T = {(MOVE), 

(TURN-RIGHT), (TURN-LEFT)}. In the second problem the ant has been limited to 3000 

time steps due to trial’s more complex nature. The PROGN3 and the PROGN4 were added to 

the basic function set in the second problem. Therefore, F ={IF-FOOD-

AHEAD,PROGN,PROGN3,PROGN4} and T = {(MOVE), (TURN-RIGHT), (TURN-LEFT)}. 
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6.5 Experimental Results 

The following section summarises the experimental results obtained for the various 

applications using the theoretical concepts outlined in the previous sections. It is divided into 

four main subsections, namely symbolic regression, the digital logic problem, the sequence 

induction problem and the artificial ant problem.  Each subsection is further subdivided to 

address the two different landscapes studied.  Each subsection captures the results obtained 

for the four case studies.  In the following, three different measures are used, namely 

percentage average total computational effort with respect to SGP, or computational effort 

ratio Rε as defined by (6.13).  

SGP

PVR
ε
ε

ε =        (6.13) 

Here ε is the computational effort as defined by (6.1) for each respective algorithm. 

Secondly, the percentage AES with respect to SGP, or AES ratio Rλ is defined (6.14).  

SGP

PVR
λ
λ

λ =        (6.14) 

Here λ is the Average number of Evaluations to a solution (AES) required before a 

successful termination. The success rate SR ratio of the PV scheme in comparison with SGP 

is defined by (6.15) where SR is defined as the percentage of runs terminating with success.  

SGP

PV
SR SR

SR
R =        (6.15) 

The genetic programming paradigm was implemented as a tree-based GP using the C 

programming language and the experiments were executed on an Intel Pentium 4 processor 

machine. Twenty runs were required for each experiment with the total number of 

generations G used in the experiments set to 90, with the probability of crossover of 0.9 and 

probability of reproduction of 0.1. The results in the following subsections are the average of 

all runs, including the unsuccessful runs, for each problem and PV scheme. The initial 
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creation of the population was ramped half-and-half with fitness proportionate selection and 

the elitist strategy. The timing for each combination of problem and algorithm varied. It took 

approximately 20 minutes for the easier problems to arrive at a solution, while the harder 

problems such as the Los Altos Hills trail took significantly longer of more than 20 hours to 

converge to a solution. It should however be noted that this is not a reliable measure for 

comparing different algorithms because it can vary depending on different PC CPU 

(processor) features and programming efficiency and style etc. The computational measure 

used in this study is a more appropriate measure, as it is specific to the GP algorithm itself 

and is independent of programming style or hardware etc, which are not related to the GP 

algorithm. It should be noted that the main aim is the reduction in total computational effort. 

In addition to lower computational effort, a faster convergence towards a solution and a 

higher success rate is a bonus and is considered to be a favourable result. An algorithm is 

considered superior if it can reach a specified fitness with less computational effort. 

6.5.1 Symbolic Regression 

6.5.1.1 Symbolic Regression with Constant Creation (degree-4) 

The total computational effort for the degree-4 polynomial regression problem in 

comparison with the SGP, Rε, is displayed graphically in Figure  6.9. The efficiency of the 

algorithm is measured by the amount of computational effort, i.e. the lower the computational 

effort, the more efficient the algorithm. From Figure  6.9, it can be observed that all the 

population variations, including the plague operator, outperform the SGP. Therefore, our 

results agree with Fernandez et al.  [79] for the amount of computational effort saved when 

using plague over SGP. In addition, it can be seen that the PV scheme proposed in this study 

achieved better results than the plague operator for this problem. 
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Figure  6.9 Performance Measures with respect to SGP for the degree-4 regression problem 
 

The amount of reduction in population amongst the variants is in the following order: 

PV-QR, PV-SR, PV-LR and PV-ER. It can be seen that as the amount of reduction is 

increased, there is an improvement in terms of computational effort. However, the 

improvement stops once the amount of reduction is beyond a certain threshold. Any 

reduction beyond this value can be considered to be detrimental as the GP does not have a 

sample space big enough to perform effectively. This can clearly be seen in Figure  6.9 as PV-

LR is better than PV-SR but PV-ER performs worse than PV-LR. Therefore, the optimal 

reduction is somewhere in the vicinity of the linear reduction scheme. Consequently, there 

will be a definite reduction scheme which will outperform PV-LR and be the optimal 

reduction scheme for this problem. The best reduction scheme for this problem is the PV-LR.  

It should be noted that all the PV schemes outperformed the plague operator, because the 

diversity in population and the number of individuals in the PV scheme is higher than the 

plague operator scheme.  It is interesting to note that the computational effort of PV-RAN is 

quite close to the computational effort of the best reduction scheme, i.e. PV-LR. It is believed 

that the reduction and increment schemes have very good side-effects on the GP 

performance, because reduction tends to eliminate poor performing individuals and 
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population increment tends to inject new high performing individuals, where the reduction 

and incrementing of individuals is centred around a sub-optimal population. The best 

performing scheme in terms of computational effort, for this problem, is the PV-LI. This 

highlights the fact that a large population size after the individuals have evolved, containing 

high fitness values, has a much better impact than a large population size initially where 

almost all the individuals are performing poorly. 

The AES compared with SGP, Rλ, can also be observed in Figure  6.9. The speed of 

convergence was considered secondary in relation to the computational effort required. 

However, if any two algorithms perform similarly with respect to computational effort, the 

AES can be used to evaluate their superiority, i.e. the faster the convergence towards a 

solution (lower number of generations required), the more superior the algorithm. It can be 

observed that the AES follows a similar trend with that of the computational effort as far as 

all the PV-Reduction schemes are concerned. The AES of the plague operator is worse than 

for SGP, because it suffers from the continuous shortage of population as compared with 

other algorithms. The PV scheme again demonstrated its superiority over the plague operator 

in this regard. PV-LR also shows favourable results over the PV-RAN scheme as it results in 

faster convergence towards a solution. PV-LI will naturally converge later than the PV-

Reduction schemes, because it initially contains a small population and it takes time before 

the populations are rich enough to contribute to the convergence of the GP. All the 

algorithms except the plague operator scheme outperformed SGP in terms of SR. PV-LR and 

PV-ER demonstrated the best SR amongst the algorithms discussed in this study for this 

problem. Overall, the PV-LI can be considered to be the superior algorithm amongst the 

algorithms discussed in this study for this problem. PV-LR was the best algorithm amongst 

the reduction algorithms. Figure  6.10 shows a typical result for the degree-4 polynomial 

regression problem. 
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Figure  6.10 A typical result for the degree-4 polynomial regression problem 
 

Figure  6.11, Figure  6.12 and Figure  6.13 show the average worst fitness, average 

mean fitness and the average best fitness for the degree-4 polynomial regression problem for 

SGP, PV-LR, PV-LI and Plague versus generation. These plots were additionally used to 

investigate any possible trends between the various algorithms and their impact on fitness. 
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Figure  6.11 Average Worst Fitness 
 

Figure  6.11 suggests that there is no possible trend for the worst performing 

individuals and that there may be a random variation. Figure  6.12 shows very similar 

variations for the mean population. Figure  6.13 illustrates the superiority of PV-LR over the 

other algorithms considering its low computational effort and fast convergence (Figure  6.9). 

(+ (* (% (* (+ X (* X X ) ) (* X X ) ) (+ X X ) )  
(+ X (+ X X ) ) ) X ) 
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Figure  6.12 Average Mean Fitness 
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Figure  6.13 Average Best Fitness 
 

PV-LI demonstrates similar performance to PV-LR after a significant number of 

generations has passed and the population has matured. Figure  6.13 is more important than 
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Figure  6.11 and Figure  6.12, as it is the best performing individual that determines the 

success predicate, i.e. final solution. Figure  6.14 shows the graph of the standardised fitness 

versus computational effort for this problem. 
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Figure  6.14 Standardised Fitness versus Computational Effort 
 

In summary, Population Variation outperforms SGP and PV-LI was the most 

effective PV scheme for this problem and PV-LR was the best algorithm amongst the 

reduction algorithms. 

6.5.1.2 Simple Symbolic Regression (degree-3) 

The simple symbolic regression (degree-3) problem is considered to be much simpler 

in comparison with the previous regression (degree-4) problem due to the lower degree of the 

polynomial and the fact that the GP is not required to create any constants for the 

coefficients. Figure  6.15 shows the computational effort ratio, the AES ratio and the SR with 

respect to SGP and Figure  6.16 shows a typical result for degree-3 polynomial regression 

problem. It was observed that all the population variation reduction schemes, including the 

plague operator scheme, outperformed the SGP. In addition, the PV schemes proposed in this 
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work achieved better results than the plague operator for this problem. The amount of 

reduction in population amongst the variants was in the following order: PV-QR, PV-SR, 

PV-LR and PV-ER. The AES for this problem was approximately ten times better than the 

AES of the degree-4 polynomial problem due to its simpler structure. Consequently, all the 

reduction schemes, operating close to their optimal population size, quickly arrived at the 

solution with a very high SR. Therefore, all the algorithms performed similarly in terms of 

SR.  Additionally, the reduction in population size removed the poor performing individuals 

and thereby reduced the computational effort. 
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Figure  6.15 Performance Measures with respect to SGP for the degree-3 regression problem 
 

 

Figure  6.16 A typical result for the degree-3 polynomial regression problem 
 

It can be argued that PV-LI scheme is not suitable or cannot compete against the 

reduction schemes when the population converges rapidly and has a very small λ and high 

SR. To illustrate, λ ranged from 38 to 84 in the degree-4 polynomial problem, but was 

between 4 and 8 for this degree-3 problem. By the time PV-LI reached a substantial 

population size with mature and rich individuals suitable for convergence, it was 

( * ( + ( - ( % X X ) ( * X X ) ) X ) X ) 
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considerably behind in terms of computational effort when compared with the other schemes, 

where they had already converged way before this point. The AES followed a similar trend 

with that of the computational effort. The AES of the PV-LI was the worst amongst the other 

algorithms as explained in the previous subsection. The PV scheme again demonstrated its 

superiority over the plague operator in this regard. Overall, the PV-ER was considered to be 

the superior algorithm amongst the algorithms discussed in this study, for this problem. 

6.5.2 Digital Logic Problems 

6.5.2.1 Even Parity 4 Generator 

Figure  6.17 shows the total computational effort, AES and SR for the even parity 4 

generator problem in comparison with the SGP. It can be observed that all the reduction 

population variants perform equally as well as the SGP, as far as the AES and SR are 

concerned. Therefore, as they are converging similarly towards a solution, one would expect 

to have a higher computational effort for these because these algorithms started off initially 

with a higher population than SGP and hence an extra computational burden. This is clearly 

seen in Figure  6.17.  
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Figure  6.17 Performance Measures with respect to SGP for the even parity 4 generator 
problem 
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It can be concluded that for this specific problem the PV-R schemes have not 

improved the AES and SR and hence are not considered to be effective. It is argued that the 

fitness landscape is fairly plateaued and this is the reason for such poor performance. As 

there is a fairly plateaued fitness landscape, AES should be similar for the PV-R schemes.   

If the fitness landscape was completely plateaued, then the GP search algorithm 

would be completely eliminated, because the GP algorithm would approach a blind random 

search. Consequently, it can be argued that population reduction is not going to be beneficial 

for such problems and more effort would be introduced, which is contrary to the statement in 

Fernandez et al.  [79]. It can be seen that the PV-RAN can lead to faster convergence at an 

extra cost of computational effort. It is believed that this is due to the beneficial side effects 

that are introduced as a result of population variation (Please refer to previous section). 

Plague performs particularly poorly, not only in relation to high computational effort but also 

at a cost of a slow convergence and worse SR. It is believed that the extra effort is due to the 

lack of individuals for the GP algorithm to effectively perform under its extreme sub-optimal 

value, wasting resources and hence resulting in a very slow convergence with a poor SR. It 

should be noted that the PV-LI variant outperforms the SGP and again demonstrates its 

superiority over all the other algorithms. Figure  6.18 shows a typical result obtained for the 

even parity 4 generator problem together with its schematic diagram in Figure  6.19. 
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Figure  6.18 A typical result for the even parity 4 generator problem 
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Figure  6.19 The schematic of the solution to the parity 4 generator problem 
 

Figure  6.20, Figure  6.21 and Figure  6.22 show the average worst fitness, average 

mean fitness and the average best fitness of SGP, PV-LI and Plague versus generation for the 

even parity 4 generator problem. These plots were also used to investigate any possible 

trends between the various algorithms and their impact on fitness. 
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Figure  6.20 Average Worst Fitness 
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Figure  6.21 Average Mean Fitness 
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Avg Best Fitness
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Figure  6.22 Average Best Fitness 
 

From the above Figures, it can be observed that the fitness landscape is fairly flat 

when compared with the regression problems and that the three algorithms perform almost 

the same as each other. To illustrate, the percentage change in average best performing 

fitness and average mean performing fitness is 12.5% and 24.9% respectively for the SGP in 

this problem, whereas it is 54.7% and 231.9% for the degree-4 regression problem. The 

percentage change for average best fitness to average worst fitness is 60.4% for SGP for this 

problem but 1823.4% for the degree-4 regression problem. Figure  6.23 show the scatter plot 

of fitness for all the individuals from a sample population of initial, midpoint and final 

generation in a randomly selected run for SGP for the regression problem and the parity 

problem respectively.   In Figure  6.23, attention should be paid to the vertical dispersion of 

data. Table  6.1 summarises the measures of spread or dispersion of this data. 
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Fitness Scatter Plot (Regression)
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Figure  6.23 Fitness scatter plot – regression and parity problem 
 

Dispersion REGRESSION PROBLEM (DEG 4) Parity Problem 

Range 18.95 7 

Variance 10.95 1.94 

Standard Deviation 3.19 1.39 

Table  6.1 Measures of Dispersion for a sample data 
 

The analysis above was conducted to compare the fitness landscape between the two 

problems and to confirm our hypothesis. Figure  6.24 shows the graph of the standardised 

fitness versus computational effort for this problem.  
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Fitness-Effort Graph
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Figure  6.24 Standardised Fitness versus Computational Effort 
 

PV-LI performs better than the Plague and also better than the SGP as the population 

starts to converge. In summary, Population variation does not perform well when fitness 

landscape is flat, as search approaches a random blind search and PV-LI only tends to show 

slight positive effects when compared with SGP under these circumstances. 

6.5.2.2 Boolean Symmetry Function 

Figure  6.25 shows the total computational effort, AES and SR for the Boolean 6-

symmetry problem in comparison with SGP. In this problem, all the population variation 

reduction schemes, including the plague operator, outperformed the SGP. 
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Figure  6.25 Performance Measures with respect to SGP for the Boolean 6-symmetry 
problem 
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In addition, all of the PV reduction schemes proposed in this study achieved better 

results than the plague operator. The amount of reduction in population amongst the variants 

was in the following order: PV-QR, PV-SR and PV-LR. It can be observed that the AES 

follows a similar trend with the computational effort. PV-ER and PV-LR had the highest SR 

for this problem. The PV reduction schemes again demonstrated their superiority over the 

plague operator in this regard. Overall, the PV-LR was the superior algorithm amongst the 

algorithms discussed in this study for this problem. Figure  6.26 shows a typical result 

obtained together with its schematic diagram shown in Figure  6.27. 

 

Figure  6.26 A typical result for the Boolean 6-symmetry problem 
 

X
Y
Z
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K
P
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Figure  6.27 The schematic of the solution to the Boolean 6-symmetry problem 
 

(AND (AND (XNOR (XNOR Y Z ) W ) (AND 
(XNOR X P ) K ) ) (AND (XNOR (AND (AND K 
(XNOR Y Z ) ) (OR (AND Y (XNOR Y Z ) )  
Z  ) ) W ) Y ) )
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6.5.3 Sequence Induction Problems 

6.5.3.1 Recursive Sequence Induction 

Figure  6.28 shows the total computational effort, AES and SR for the recursive 

induction problem in comparison with SGP.  
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Figure  6.28 Performance Measures with respect to SGP for the Recursive Sequence 
Induction Problem 

 

It can be observed that all the population variation reduction schemes excluding the 

PV-SR and the plague operator outperform the SGP. In addition, it can be seen that the best 

schemes are the PV-RAN and PV-LR algorithms. It can also be observed that the AES 

follows a similar trend to that of the computational effort. PV-RAN had the best SR. It is 

believed that the reduction and increment schemes have very good side-effects on the GP 

performance, as reduction tends to eliminate poor performing individuals and population 

increment tends to inject new high performing individuals, where the reduction and 

incrementing of individuals is centred around a sub-optimal population. PV-RAN was 

effective in solving this problem. Figure  6.29 shows a typical result obtained for this 

problem. 
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Figure  6.29 A typical result for the recursive induction problem 
   

6.5.3.2 Simple Sequence Induction 

Figure  6.30 shows the total computational effort, AES and SR for the simple 

sequence induction problem in comparison with SGP. 
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Figure  6.30 Performance Measures with respect to SGP for the Simple Sequence Induction 
Problem 

 

All the population variation reduction schemes together with the plague operator 

outperformed the SGP in this problem. It was also observed that all of the PV reduction 

schemes proposed in this study achieved better results than the plague operator. Moreover, 

the best scheme was the PV-SR algorithm for this problem. Figure  6.31 shows a typical result 

obtained for this problem. 

 

Figure  6.31 A typical result for the simple sequence induction problem 
 

(+ (* (* J 2 ) 1 ) (+ (+ (+ (* (- J 1 ) (- (* J 2 ) (+ 2 J ) ) ) (+ 
(* 2 J ) J ) ) 0 ) 1 ) ) 

(- J (SRF (* (SRF (- J 1 ) (SRF 1 1 ) ) (SRF (SRF (- J 1 ) J 
) (- J 1 ) ) ) (* (- (- J (SRF (- (- J 1 ) 1 ) (- J 1 ) ) ) (SRF (- J 
1 ) (- J 1 ) ) ) (SRF 1 (* (- J 1 ) (- J 1 ) ) ) ) ) ) 
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6.5.4 Artificial Ant Problem 

6.5.4.1 Santa Fe Trail 

Figure  6.32 shows the total computational effort, AES and SR for the Santa Fe Trail 

problem in comparison with SGP.  
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Figure  6.32 Performance Measures with respect to SGP for the Santa Fe Trail 
 

It can be observed that all the population variation reduction schemes together with 

the plague operator outperform the SGP. Therefore, our results agree with Fernandez et al. 

 [79] for the amount of computational effort saved when using plague over SGP. In addition, 

it can be seen that all of the PV reduction schemes proposed in this study achieved better 

results than the plague operator for this problem. Moreover, it can be seen that the best 

scheme is the PV-SR algorithm for the Santa Fe Trail problem. Figure  6.33 shows a typical 

result obtained for the Santa Fe Trail problem.  

 

Figure  6.33 A typical result for the Santa Fe Trail 
 

(( PROGN ) (IF-FOOD-AHEAD (IF-FOOD-AHEAD ( 
MOVE ) ( MOVE ) ) (( PROGN ) ( RIGHT ) ( MOVE ) ) 
) (( PROGN ) (( PROGN ) ( LEFT ) (( PROGN ) ( RIGHT 
) (( PROGN ) (IF-FOOD-AHEAD ( RIGHT ) ( RIGHT ) ) 
(IF-FOOD-AHEAD ( MOVE ) ( LEFT ) ) ) ) ) ( LEFT ) ) 
) 
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6.5.4.2 Santa Fe Trail 

All the population variation reduction schemes and the plague operator outperform 

the SGP for this problem, as shown in Figure  6.34. The best scheme is the PV-RAN 

algorithm.  
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Figure  6.34 Performance Measures with respect to SGP for the Los Altos Hills Trail problem 
 

It can be observed that all the population variation reduction schemes and the plague 

operator outperform the SGP for this problem and that the AES follows a similar trend with 

the computational effort. PV-LI and the plague operator showed poor SR and AES 

performance. The PV-SR, PV-LR and PV-ER reduction schemes performed almost equally 

and can be considered as the best reduction schemes for this problem.  

Figure  6.35 shows a typical result obtained for the Los Altos Hills Trail problem. 
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Figure  6.35 A typical result for the Los Altos Trail 
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6.6 Conclusion and Finishing Remarks 

In this chapter the concept of population variation was presented and it was 

investigated whether the nature of the “population variation”, i.e. the way the population is 

altered during the run, has any significant impact on GP performance in terms of 

computational effort. The main aim was to save computational effort by systematically 

altering the population size (by either increasing or decreasing the population size or 

performing both) by various strategies during the run. The faster convergence to a solution 

and SR was considered a bonus. We experimented with various schemes for population 

variation on four different problems on two separate landscapes for each problem to provide 

a good range of problem diversity. 

Experimental evidence has been produced to show that population variation can 

significantly improve performance by reducing the computational effort to reach a given 

fitness level, provided that the fitness landscape is not plateaued. Population reduction only 

works when the fitness landscape is not plateaued. It was also shown that the way the 

population is reduced has an impact on performance depending on the problem domain, 

which is ultimately driven by the fitness landscape. Consequently, every specific problem has 

its own most favourable reduction profile. It was illustrated that the best performing profiles 

studied herein were the linear increment scheme for the degree-4 symbolic regression 

problem, exponential reduction scheme for the degree-3 regression problem, linear increment 

scheme for the parity problem, linear reduction scheme for the Boolean symmetry problem, 

random reduction and step reduction for the recursive sequence induction and simple 

induction respectively, step reduction for the Santa Fe trails and random reduction schemes 

for the Los Altos Hills trail.  
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Evidence was also produced to show that the proposed PV scheme achieved better 

results than the plague operator scheme and outperformed the SGP. In the next chapter the 

dynamic adaptation of population size and its impact on the GP algorithm using a heuristic 

feedback mechanism is investigated and it is shown to result in further improvements.  
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CHAPTER 7 

 

7 DYNAMIC POPULATION VARIATION 
 
 
 
“Everyone is a genius at least once a year. The real geniuses simply have their bright ideas closer 
together.”, Frank Lloyd Wright. 
 
 
 
 
 
 
 
 
 
 

7.1 Introductory Notes 
 

In the previous chapter, the concept of population variation (PV) scheme was 

introduced, where the population could be increased and/or decreased with a variable profile, 

where the increment or reduction of population size could take on any flexible profile such as 

linear, exponential, hyperbolic, sinusoidal or even random. The population size was varied 

during the run and it was demonstrated that PV significantly improved performance and 

showed that the optimum profile was dependant on the problem domain, which was 

ultimately driven by the fitness landscape. This investigation  [164] involved what can be 

referred to as static population variation in genetic programming. Static population variation 

employs a deterministic adaptation approach using simple time-varying schedules, where the 

population size is varied according to a deterministic function P(g). The function P(g) is the 

Population-Generation profile, which determines the total number of individuals (the 

population size) at any generation g. One of the shortcomings of the static population 
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variation scheme is that the population size is varied by a blind deterministic function. It is 

more desirable to vary the population size in an informed way during the run. Using a 

heuristic feedback mechanism, the population size can be dynamically varied by taking into 

account the actual progress of GP in solving the problem. In this chapter another technique is 

investigated, where the size of the population is varied dynamically during the execution of 

the GP system. The population size is varied “on the run” according to some particular events 

occurring during the evolution. Table  7.1 clearly defines and summarises the difference 

between population variation and dynamic population variation.  

Algorithm Acronym Description 

Population Variation PV It employs a deterministic adaptation using simple time-varying 
schedules. The population is changed using a deterministic function. 
The population profile is known prior to the run, hence termed as 
“static”. 

Dynamic Population Variation DPV It employs a feedback mechanism. By using the actual progress made, 
the population profile is “dynamically” changed during the run. The 
population profile is unknown prior to any given run. 

 Table  7.1 Population Variation vs. Dynamic Population Variation 
 

In this section, various new ways are proposed to dynamically vary the population 

size during the run of the GP system. The proposed approach referred to as Dynamic 

Population Variation (DPV)  [165], extends the work of Fernandez et al.  [81] and proposes 

new modifications to it.  

7.2 Introduction to Dynamic Population Variation 
 

As described in the previous section, it is desirable to dynamically vary the size of the 

population during the execution of the GP system. The population size is dynamically 

increased if the change in fitness improvement is less than some functional value, called the 

pivot ρ as defined by (7.1) to (7.3), and reduced if this change is more than the pivot. The 

motivation is to add new individuals when the GP system is reaching a stagnation phase and 

remove individuals when the GP process is progressing well. Two specific pivot functions, 
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DIV and SUP were introduced  [81] with the dynamic modification of the population size 

described as a pseudo-algorithm. Herein, the modifications are summarised by (7.1) to (7.3), 

showing the respective calculations of the pivot functions.  
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Where, 

if  is the fitness of the best individual in the population at generation i. 

T is the period defined as the number of generations over which the pivot is calculated. In 

other words, the period is the number of generations between two successive updates of the 

pivot. 

 

It should be noted that the period T can be set to 1, forcing the pivot to be renewed at 

each generation. In this study, the period has been set to 1 to renew the pivot at each 

generation. Population size is varied at each generation according to (7.4), which defines the 

change in population size at generation g. The generation number “g” ranges from 0 (the 

initial generation containing the initial random population) to G, which is the maximum 

number of generations to be run. P(g) is the total number of individuals (the population size) 

at any generation g. 
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 Given the set of trees T = {T1, T2, T3, … ,TM}, which form the M populations at 

generation g, sorted according to fitness f(T1)≤f(T2) ≤f(T3) ≤…≤f(TM) , where f is the fitness 

function, the k worst trees from a fitness point of view are removed at each generation for 

decrementing the population size. For incrementing the population size, the m best 

performing trees from a fitness point of view are selected and mutated at each generation. 

These mutated individuals are then added to the next generation.  

In this chapter, three possible modifications to this technique of dynamic population 

variation are explored and investigated, as outlined in each of the subsections 7.2.1 through 

to 7.2.3. The first modification includes the introduction of four new and different 

characteristic measures for determining and assessing the stagnation phase. Secondly, a new 

gradient based pivot function (GRAD) is proposed along with an attempt to determine the 

role of different pivot functions. The GRAD pivot function is compared with the DIV and 

SUP pivot functions. Finally, the population change equation (7.4) is modified to remove the 

special constants within it and make it more general. It is strongly believed that such 

constants should be avoided if possible, as they can be problem dependant and restrict 

generalisation. Table  7.2 summarises the proposals that are investigated in this chapter. 

Proposals Description 

Formalisation of population variation The population variation is further formalised via the Dynamic 
Population Variation (DPV) with its new proposals outlined below 
and replacement of pseudo-algorithm with appropriate equations. 

Stagnation Assessment  Various new models are proposed via the characteristic measureΦ to 
assess stagnation and alter population size based on this measure. 

Pivot Function The GRAD Pivot Function is introduced and investigated. 
Generic Population Variation A new method to alter population size is introduced eliminating the 

need for any special constants.  
Table  7.2 Summary of Dynamic Population Variation (DPV) 

 

7.2.1 Stagnation Phase Assessment 

The stagnation phase within GP as defined in equation (7.3) is measured in terms of 

the best performing individual in the population at any generation. It is suggested that some 

different ways of measuring the stagnation phase should be investigated and it is required to 
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be determined whether a more appropriate measure can be defined. This previous definition 

simply relies on the best performing individual. Consider the box and whisker plot depicted 

in Figure  7.1, which shows the spread of fitness values for two different generations, 

generation i and generation j at some time later in the evolution. The best performing 

individuals in both generations have the same fitness. However, all the other individuals 

within generation j have improved and are progressing. If the previous definition is used, the 

GP is considered to be stagnating, which may be considered a contradiction to the 

observation in Figure  7.1. All the individuals with the exception of the best performing 

individual have significantly progressed from one generation to the other as shown in Figure 

 7.1.  

 

Figure  7.1 Fitness Distribution of two generations - Box and Whisker Plot 
  

 

A general delta function Δ is defined by (7.5) which computes the difference of a 

characteristic measure at two different generations. The measure can represent any 

measurable value, criterion, or characteristic feature.  If it represents the fitness of the best 

performing individual then the generalised delta function is simplified to the original function 

as defined by (7.3).  

iii Φ−Φ=Δ −1      (7.5) 

In this chapter, four possible attributes which Φ can take are investigated. The 

characteristic measure Φ can represent the mean of the fitness function for all the individuals 

Generation i 

Generation j 
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at previous generation in comparison with the current generation, as defined by (7.6). The 

performance of all the individuals combined could provide a better indicator of a stagnation 

phase. 
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Alternatively, Φ can represent the fitness median m between two successive 

generations as defined by (7.7).  The fifty percentile mark may represent a more accurate 

assessment of the stagnation phase, as extreme values or outliers can significantly affect the 

mean. 

iii mm −=Δ −1       (7.7) 

The measure Φ can also represent the fitness upper quartile (UPQ) difference between 

two successive generations as defined by (7.8).   

iii upqupq −=Δ −1      (7.8) 

Finally, the difference of the mean of high performing individuals between two 

consecutive generations as defined by (7.9) is investigated. The 90% mark is considered as 

the cut-off for the high performing (HP) individuals. The number of individuals from a 

fitness perspective within this window (90% cut-off) at generation g is represented by 

)(gnHP . ∑
HP

gf denotes the sum of fitness values of all the individuals within this range at 

generation g. The performance of all the “top” performing individuals combined could more 

accurately characterise the stagnation phase. This study should provide a better 

understanding of the stagnation phase and its definition in GP, at least for the problems 

studied herein. 
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7.2.2 Role of the Pivot Function 

The pivot function is used to decide whether new individuals are required to be 

inserted into the population or existing individuals are needed to be eliminated. It is 

eventually employed in determining the stagnation phase. Using (7.1), (7.3) and (7.4), it can 

be shown that the relationship defined by (7.10) is present for the DIV pivot function, when 

the period is set to 1. 

1−Δ≥Δ ii       (7.10) 

Correspondingly, a similar relationship can be portrayed for the SUP pivot function as 

defined by (7.11). 

12
1

−Δ×≥Δ ii       (7.11) 

It was reported in  [81] that the DIV pivot function demonstrated a superior 

performance to the SUP pivot function. This could be the expected behaviour for the best-

performing-individual (7.3) since fitness improvements for the best performing individual 

normally reduce rapidly with very small changes. Hence the DIV pivot function reflects a 

more accurate measurement of the stagnation phase and even counter-affecting it, whereas 

the DIFF unnecessarily subjects the GP to further constraints by removing individuals. It is 

believed that the expected performance improvement is a complex function of population 

size, the individual or criterion  in question, the fitness landscape and many other possible 

variables. To illustrate, the GRAD pivot function is introduced as subjected to the constraints 

in (7.12) and defined by (7.13). 
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It is expected that the gradient pivot function will perform worse than the DIV and 

SUP pivot functions when Φ  is defined as the best-performing individual, because it subjects 

GP to more constraints, and thereby opposes the natural intricacy of the genetic programming 

algorithm in solving solutions. However, it would be interesting to study the performance of 

the GRAD pivot function for other values of Φ, as the expected performance improvements 

for the other measurable criteria cannot be as easily formulated as the best performing 

individual. 

It is believed that a pivot function subjected to the “true” GP constraint will yield 

much better results than the DIV, SUP or GRAD pivot functions. It is also believed that there 

is an optimum pivot function for each GP problem that describes the true effort required for 

the specific algorithm that yields the best performance. 

7.2.3 Constant Replacement 

It is desirable to have a formula that computes the new population size without the 

special constants defined in (7.4). It is believed that such constants are not pertinent to the GP 

algorithm and are considered superfluous or inappropriate. Any empirical constant in an 

algorithm can be problem dependant and will restrict generalisation. Consequently, (7.4) is 

modified to (7.14) according to a proportionate population increment/decrement scheme 

without the need for special constants. 

)()1()( 1 gP
f

gP
optimal

ggn ×
Δ−Δ

−=Δ
−    (7.14) 

Where, 

ρ≥Δ= gifn 1  
ρ<Δ= gifn 2  
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7.2.4 Computational Effort 

Similar to the previous chapter the efficiency of the GP algorithm is determined by 

the amount of computational effort ε expended, as defined by (7.15), i.e., the lower the 

computational effort, the more efficient the algorithm. The main goal is to minimise the 

computational effort as indicated by (7.16). The Average number of Evaluations (AES), λ, is 

considered secondary to the computational effort. 

∑ =
== Gg

gc gP0 )(ε       (7.15) 

SGPcDPVc ,, εε ≤       (7.16) 

7.2.5 General Remarks 

It is noted that if the fitness is not improving at all, then the SUP pivot functional 

value is equal to zero, as follows: 

⋅⋅⋅=== −− 21 iii fff  
021 =⋅⋅⋅=Δ=Δ=Δ∴ −− iii  

01
=ΔΔ×=⇒ ∑ j jSUP T

ρ     (7.17) 

However, this is not true for the DIV pivot function, even though 01 =Δ −i .  In this 

instance, as iΔ  also evaluates to zero and division by zero is undefined (
0
0 ), the pivot will 

evaluate to one rather than zero as follows: 

⋅⋅⋅=== −− 21 iii fff  
021 =⋅⋅⋅=Δ=Δ=Δ∴ −− iii  

1111 1 ∑∑ =×=
Δ

Δ
×=⇒ −

jj
j

j
DIV TT

ρ  

, as 0,11 =Δ∀=
Δ
Δ −

i
i

i .    (7.18) 
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It is noted that a rapidly improving fitness implies that ⋅⋅⋅>>Δ>>Δ>>Δ −− 21 iii  . For 

the DIV pivot function, this means a division by a larger number and hence a smaller pivot. 

For the SUP pivot function, this means a subtraction from a larger value and hence this could 

lead to a negative pivot. Figure  7.2 can assist in visualizing this point. 

 

Figure  7.2 Fitness versus generation – Minimisation Problem 
 
 

It should be noted that these facts contradict the published values of  [81], where it 

was mentioned that if fitness is not improving at all, the pivot will be equal to zero. This is 

only true for the SUP pivot function as shown above. It was also stated that if fitness is 

rapidly improving, the value of pivot is high, otherwise it is low. In addition, the following 

inequality was noted, which is not necessarily correct: 01 ≥Δ≥Δ − gg . Figure  7.2 can be used 

as a counterexample.  Moreover, it was noted that the pivot is always positive  [81]. This is 

only true for the DIV pivot function, but not true for the SUP pivot function, because the 

inequality 01 ≥Δ≥Δ − gg  does not always hold. 

ii-1i-2i-3
g 
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7.3 Experimental Results 
 

The percentage average total computational effort with respect to SGP, or 

computational effort ratio Rε is defined by (7.19) and the percentage AES with respect to 

SGP, Rλ is defined by (7.20). 

SGP

DPVR
ε
ε

ε =       (7.19) 

SGP

DPVR
λ
λ

λ =       (7.20) 

7.3.1 Symbolic Regression Problem 

Figure  7.3 and Figure  7.4 show the comparative total computational effort and AES 

results for the degree-4 and degree-3 polynomial regression problems respectively. The SGP 

algorithm is compared with the GRAD, DIV and SUP pivot functions using the best 

performing individual as the selected characteristic measure along with standard population 

increment/decrement according to (7.4). Similar results were obtained for the proportionate 

population increment/decrement according to (7.14). It can be observed that the AES and the 

computational effort follow similar trends. As expected, the DIV pivot function outperformed 

the other pivot functions when the best performing individual was selected as the 

characteristic measure Φ. This is due to the fact that the DIV function continuously injects 

new high performing individuals into the population when the progress in terms of fitness of 

the best performing individual starts to slow down. 
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Pivot Selection (Best Performing-STD)
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Figure  7.3 Pivot Selection Function – Best Performing Individual with standard 
increment/decrement (Degree-4) 

 

Pivot Selection (Best Performing-STD)
Degree-3 problem
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Figure  7.4 Pivot Selection Function – Best Performing Individual with standard 
increment/decrement (Degree-3) 

 

 

When the characteristic measure Φ was defined as the top performing individuals 

(UPQ and HP mean), comparable behaviour was observed as that for the best performing 

individual. In general, SUP was superior to GRAD in these instances, but DIV was superior 

to the other two pivot functions when the characteristic measure Φ was the top performing 

individuals. For this problem, because the fitness landscape is very steep and fitness 

improvements are large, all pivot functions behaved similarly during the initial phase of GP 
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with respect to population modifications but improvements continually diminished for these 

characteristics towards the end of the generation.  DIV injected new individuals to boost the 

performance of the GP and thereby attempted to increase the fitness of the population, 

whereas the GRAD and SUP continually removed individuals in these instances and 

therefore made it harder for the GP system to converge towards the solution. This is the main 

reason for DIV’s superiority. 

For mean and median characteristic measures DIV gave over its superiority to GRAD 

and SUP. In these cases the focus being on the central values, there was continuous 

improvement in Φ, but as these were only in small amounts GRAD and SUP tended to 

remove individuals as a result. However, the DIV pivot function from the initial stages 

incorrectly considered these to be stagnated and unnecessarily enforced more pressure on the 

GP to perform by increasing the population. These extra individuals at the initial stages of the 

iteration become a computational burden and hence resulted in poor performance of DIV in 

these instances. In general, in most instances the proportionate population increment and 

reduction scheme according to (7.14) performed very similarly to the standard scheme 

according to (7.4).  In this case (7.14) provided a more generalised approach to population 

variation. Although there were improvements observed for the proportionate scheme over the 

standard reduction increment scheme in some instances, in other instances a small 

performance reduction was observed. The performance reduction was mainly observed 

during the periods when the changes in population variation according to (7.14) resulted in 

large and abrupt changes, whereas the changes in population as a result of (7.4) were always 

fixed and smooth. 

Overall, the best performing pivot function for the degree-4 polynomial problem was the DIV 

pivot function using the HP mean characteristic measure and proportionate population 

increment/decrement, as shown in Figure  7.5. However, the best performing pivot function 
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for the degree-3 polynomial problem was the DIV pivot function using the HP mean 

characteristic measure with fixed or standard population increment/decrement as shown in 

Figure  7.6. Both of these pivot functions were superior to SGP, the plague operator  [79], 

dynamic population modification technique in  [81] and all the static PV schemes reported in 

 [164].  
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Figure  7.5 Pivot Selection Function – High Performing Mean with Proportionate 
Increment/decrement) 
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Figure  7.6 Selection Function – High Performing Mean with standard increment/decrement 
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7.3.2 Digital Logic, Sequence Induction and Artificial Ant Problems 

For the even parity 4 generator problem, the GRAD pivot function outperformed the 

other pivot functions. It is argued that the fitness landscape is fairly plateaued  [164] and this 

is the reason for such performance. If the fitness landscape is completely plateaued then the 

GP search algorithm would be completely eliminated because the GP algorithm would 

approach a blind random search. This means that for all the characteristic measures   

improvements were quite slow during the initial phase and GRAD continually removed 

individuals as a result, whereas DIV introduced new individuals. However, towards the end 

of the generation the progress of the characteristic measure Φ significantly deteriorated and 

individuals were needed to be added in this instance (similar behaviour for all pivot functions 

here). Although it is beneficial to remove individuals at early stages of the generations both 

the DIV and SUP pivot functions increased the population during these stages. These extra 

individuals at the initial stages of the iteration become a computational burden resulting in 

inferior performance. This observation is in agreement with the findings in  [164], where PV-

LI (Population Variation Linear Increment) demonstrated its advantage when the population 

is reduced at the beginning and increased towards the end of the generation. Overall, the best 

performing pivot function for the even parity 4 generator problem was the GRAD pivot 

function using the HP mean characteristic measure with standard population 

increment/decrement as shown in Figure  7.7. GRAD had a smaller computational effort at 

the cost of higher AES since individuals were removed from the population in the initial 

stages of GP. On the other hand the AES of the DIV pivot function appeared to be smaller at 

the cost of higher computational effort due to the addition of extra individuals introduced 

initially by the DIV pivot function. DIV still outperformed SGP, all the static PV schemes 

 [164], plague  [79] and the dynamic population modification technique in  [81]. 
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Pivot Selection (High Mean - STD)
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Figure  7.7 Pivot Selection Function – High Performing Mean with standard 
increment/decrement 

 

For the Boolean 6-Symmetry problem, DIV was the better pivot function for most of 

the characteristics measures, except for the best performing individual. A similar analysis 

applies here as for the regression problem and the even parity 4 generator problem. The DIV 

pivot function using the best performing individual characteristic measure did not perform 

well because the fitness improvements were extremely slow from the outset. However, for 

the other characteristics measures there was continuous improvement from the beginning 

ensuring DIV’s dominance in these cases. For the Boolean 6-Symmetry problem, GRAD 

with upper quartile selection and proportionate population increment/decrement was the best 

pivot function as shown in Figure  7.8. Similar conclusions as that for the regression problems 

can be made in relation to the proportionate population increment/decrement. Once more, 

DPV was superior to the all other previously reported algorithms  [79]  [81]  [164]. 
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Figure  7.8 Pivot Selection Function – UPQ with Proportionate Increment/decrement 
 

The trends in improvement achieved with the characteristic measures for the 

Fibonacci sequence problem were similar to the parity generator problem and for similar 

reasons the SUP pivot function showed its superiority. Also, the best pivot function for the 

simple sequence induction problem was the DIV pivot function. The SUP pivot function with 

upper quartile selection and standard population increment/decrement was the best pivot 

function for the Fibonacci sequence problem, whereas the DIV pivot function using the HP 

mean as the characteristic measure with standard population increment/decrement was the 

best pivot function for the simple induction problem. Comparable conclusions can be drawn 

for the proportionate population increment/decrement as that for the other problems. For the 

Fibonacci sequence problem both of the pivot functions, SUP with upper quartile selection 

and DIV with HP mean selection, were superior to SGP, the plague operator  [79], the 

dynamic population modification technique in  [81] and all the static PV schemes reported in 

 [164]. 

The best pivot function for the Santa Fe problem was the GRAD pivot function 

(Figure  7.9a). Although DIV with top mean selected as characteristic measure with standard 

population increment and decrement performed exceedingly well, the GRAD pivot function 

with upper quartile selection and standard population increment/decrement was the best pivot 
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function for this problem. Amongst the proportionate increment/decrement schemes DIV 

with top mean as characteristic measure was the best. It is pointed out that both the DIV and 

GRAD with standard increment/decrement outperformed SGP, all the static PV schemes 

 [164], plague  [79] and the dynamic population modification technique in  [81]. For the Los 

Altos Hill trail problem, GRAD was the better pivot function for most of the characteristics 

measures, except for the best performing individual and the mean. The GRAD pivot function 

with top mean as characteristic measure and standard population increment/decrement was 

the best pivot function for this problem (Figure  7.9b). Similar trends were observed for the 

proportionate increment/decrement schemes for the GRAD pivot function. Once more, DPV 

was superior to the all other previously reported algorithms  [79]  [81]  [164]. 
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Figure  7.9 Pivot Selection Function – Santa Fe and Los Altos Hill trail 

a 

b 
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7.4 Conclusion 
 

In this chapter the concept of DPV was introduced. The Dynamic Population Variation 

used the various characteristic measures for pivot functions together with a newly defined 

gradient based pivot function and a proportionate population increment/decrement scheme. 

The focus of this chapter was to investigate whether these newly introduced ideas can in any 

way have significant impact on GP performance in terms of computational effort. The main 

aim was to save computational effort by the dynamic adaptation of population size, that is by 

varying the population size by either incrementing or decrementing during the GP run using a 

heuristic feedback mechanism. These newly introduced schemes were experimented on three 

different problems on two separate landscapes for each problem to provide a good range of 

problem diversity. Experimental evidence has been produced to show that DPV can 

significantly improve performance by reducing the computational effort to reach a given 

fitness level. From this study, it can be concluded that the optimal pivot function is highly 

dependant on the amount of population variation, the population size, the fitness landscape 

and the pivot function’s selected characteristic measure. For every specific problem, an 

optimal pivot function should exist which will depend on the actual characteristic measure 

used to determine stagnation. Consequently, every specific problem has its own most 

favourable combination of pivot function, population variation and characteristic measure. 

Although, there were some reductions in performance for some of the problems when the 

constant dependent population modification equation (7.4) was replaced with the generalised 

proportionate population increment/decrement equation (7.14), in most cases the 

performances for the problems studied were comparable.  In fact, for some of the problems 

the generalised equation showed superior performance. The best performing schemes studied 

were the DIV pivot function using the HP mean characteristic measure with proportionate 
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population increment/decrement for the degree-4 symbolic regression problem; the DIV pivot 

function using the HP mean characteristic measure with standard population 

increment/decrement for the degree-3 regression problem and simple induction problem; the 

GRAD pivot function using the HP mean characteristic measure with standard population 

increment/decrement for the parity problem; the GRAD pivot function with upper quartile 

selection and proportionate population increment/decrement for the Boolean symmetry 

problem; and the SUP pivot function with upper quartile selection and standard population 

increment/decrement for the recursive sequence induction problem. It was also discovered 

that the high performing mean and upper quartile were more suitable characteristic measures 

to use than the single best performing individual for the problems considered in this study. 

The proposed innovations  [165] were shown to be superior to SGP, the plague operator  [79] 

and all the static PV schemes previously reported in  [164], at least for the representative 

problems studied here. 
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CHAPTER 8 

 

8 EVALUATION AND ANALYSIS  
 
 
 
“An expert is a man who has made all the mistakes, which can be made, in a very narrow field”, 
Niels Bohr. 
 
 
 
 
 
 
 
 
 
 

8.1 A Statistical Analysis 
 

In the previous sections, the workings and the superiority in performance of the static 

Population Variation (PV) and Dynamic Population Variation (DPV) was demonstrated. In 

this subsection, statistical inference is used to verify their superiority with some level of 

confidence across the various problems studied herein. A sample statistic such as X  (sample 

mean) can vary from sample to sample and by taking into consideration this variability an 

interval estimate of the population mean can be developed. This interval can be used in 

estimating the population mean with a specified confidence. The level of confidence is 

symbolised by %100)1( ×−α , where α is the proportion in the tails of the distribution which 

is outside the confidence interval. In other words, the proportion in the upper tail of the 

distribution is α/2 and the proportion in the lower tail of the distribution is also α/2. For 
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example, an α of 0.05 corresponds to a 95% confidence. The confidence interval for a mean 

of a population μ with an unknown population standard deviation σ can be estimated for a 

sample of size n by using (8.1) and a t-distribution with n-1 degrees of freedom for an area of 

α/2 in the upper tail. X  is the sample mean and S is the sample standard deviation. 

 

n
StX

n
StX nn 11 −− +≤≤− μ      (8.1) 

  

Figure  8.1 shows the distribution of the computational effort for SGP and PV for the 

degree-4 regression problem. The distribution in the solid darker line represents the PV 

scheme and the distribution in the lighter line represents the SGP. The confidence intervals 

for each of the algorithms are computed using (8.1) with a 95% level of confidence. It can be 

said with 95% confidence that the population mean is estimated to be between 11825.8 and 

28508.2 for the PV scheme and between 30109.3 and 53791.7 for the SGP. Appendix G 

contains the critical points of the t-Distribution.  

 

Figure  8.1 Distribution of Computational Effort for SGP and PV for the degree-4 regression 
problem 

 

The above discussion provides the necessary background and foundation for the 

inferential statistical formulation that will be used in this subsection for comparing the 
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performance means of various schemes. The formal or more specifically the standard 

methodology for comparing statistics from two samples of data (or schemes) drawn from two 

populations involves the “two-sample test” in conjunction with the hypothesis-testing 

methodology. Hypothesis testing begins with some claim or assertion about a particular 

parameter of a population. The null hypothesis (H0) refers to the hypothesis that the 

population parameter is equal to a certain specification. The specification of a null hypothesis 

is generally combined with the specification of the alternative hypothesis (H1) (or sometimes 

referred to as the research hypothesis). The alternative hypothesis is the opposite of the null 

hypothesis (H0). The hypothesis-testing methodology is designed such that the rejection of H0 

is based on evidence from the sample data that the alternative hypothesis (H1) is far more 

likely to be true. This methodology provides clear definitions for evaluating differences.  

The test statistics used to compare statistics from samples of data drawn from two 

populations is the t-Test for the difference between two means. This test statistic is based on 

the difference between the sample means, i.e. )( 21 XX − , where 1X denotes the mean of the 

sample taken from population 1 and 2X denotes the mean of the sample taken from 

population 2. The sample size taken from the first and second population are denoted by n1 

and n2 respectively. Similarly, μ1 and μ2 represent the respective population means from each 

population and σ1 and σ2 represent the population standard deviations from each population.  

In most cases, the variances and the standard deviations of the two populations are not known 

and the only information available is the sample means ( 1X and 2X ), the sample variances or 

the sample standard deviations (S1 and S2). In this instance, the t-Test for the difference 

between two means is used to verify whether there is a significant difference between the 

means of the two populations. This statistic follows a t-Distribution with n1+n2-2 degrees of 

freedom. For a specified level of significance α, the null hypothesis is rejected if the 

computed t-test statistic is greater than the critical value from the t-Distribution. Appendix G 
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contains the critical values from the t-Distribution. The t-Test statistic can be computed using 

(8.2) and (8.3), where 2
pS  denotes the pooled variance. 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−−−
=

21

2

2121

11

)()(

nn
S

XX
t

p

μμ      (8.2) 

 

)1()1(
)1()1(

21

2
22

2
112

−+−
−+−

=
nn

SnSn
S p      (8.3) 

 

The above mentioned hypothesis-testing methodology together with the t-Test for the 

difference between two means is utilised in this section to evaluate the performance means of 

the static population variation and dynamic population variation for the various problems 

detailed in this thesis. 

The following null hypothesis and alternative hypothesis are formulated as per (8.4) 

for the evaluation of the performance means. The desired outcome is the rejection of the null 

hypothesis implying that there is a difference between the performance means among the two 

different schemes and the differences are not a resultant of chance and usage of one scheme 

over the other will provide the better performance. 

 

210 : μμ =H        (8.4) 

211 : μμ ≠H  

Table  8.1 shows the summary of the statistical computation for the degree 4 

Regression Problem for the static population variation. The critical value is obtained from the 

t-Distribution for a degree of freedom of 38 and level of significance of 0.05. This 
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corresponds to a 95% level of confidence. The t-Test value is calculated using (8.2) and (8.3). 

As the computed t-Test is larger than the critical value obtained from the t-Distribution 

tables, the null hypothesis is rejected and the alternative hypothesis (H1) is far more likely to 

be true. This means that the performance means of the two algorithms is not the same and 

there is a significant difference in performance between the two algorithms. In this instance, 

the PV scheme shows its superiority as expected. 

 

Regression Problem – Degree 4 

   SGP PV 

Mean 41950 20167 

Standard Deviation 17889.94 12602.55 

t-Test 4.4517 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.1 Summary of the statistical computation for the degree 4 Regression Problem (PV 
Scheme) 

 

Table  8.2 shows the summary of the statistical computation for the degree 4 

Regression Problem for the dynamic population variation. This table indicates that there is 

sufficient evidence to reject the null hypothesis (H0). It can be concluded that the 

performance means of the two schemes are different. Based on these results, the 

computational burden on GP using dynamic population variation appears to be lower than 

that of the SGP.  
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Regression Problem – Degree 4 

   SGP DPV 

Mean 41950 14871 

Standard Deviation 17889.94 5070.67 

t-Test 6.5126 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.2 Summary of the statistical computation for the degree 4 Regression Problem (DPV 
Scheme) 

 

Table  8.3 to Table  8.16 provide the summary of the statistical computation for each of 

the remaining problems on the two different landscapes. Similar conclusions and comments 

as per above apply to these problems. 

 

Regression Problem – Degree 3 

   SGP PV 

Mean 3800 2996 

Standard Deviation 547.72 637.16 

t-Test 4.2783 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.3 Summary of the statistical computation for the degree 3 Regression Problem 
(PV Scheme) 
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Regression Problem – Degree 3 

   SGP DPV 

Mean 3800 1606 

Standard Deviation 547.72 772.96 

t-Test 10.3554 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.4 Summary of the statistical computation for the degree 3 Regression Problem (DPV 
Scheme) 

 

 

 

Digital Problem–Parity Checker  

   SGP PV 

Mean 237857 206471 

Standard Deviation 25497.30 22665.39 

t-Test 4.1144 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.5 Summary of the statistical computation for the Digital Parity Checker Problem (PV 
Scheme) 
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Digital Problem–Parity Checker 

   SGP DPV 

Mean 237857 189120 

Standard Deviation 25497.30 10788.29 

t-Test 7.8727 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.6 Summary of the statistical computation for the Digital Parity Checker Problem 
(DPV Scheme) 

 
 

 

Digital Problem–Bool. Symmetry  

   SGP PV 

Mean 146000 105120 

Standard Deviation 50225.81 36229.39 

t-Test 2.9521 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.7 Summary of the statistical computation for the Digital Boolean Symmetry Problem 
(PV Scheme) 
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Digital Problem–Bool. Symmetry 

   SGP DPV 

Mean 146000 75134 

Standard Deviation 50225.81 32923.37 

t-Test 5.2772 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.8 Summary of the statistical computation for the Digital Boolean Symmetry Problem 
(DPV Scheme) 

 
 

 

Sequence Induction–Simple 

   SGP PV 

Mean 52080 15660 

Standard Deviation 31808.4 13346.33 

t-Test 4.7217 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.9 Summary of the statistical computation for the Simple Sequence Induction 
Problem (PV Scheme) 
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Sequence Induction–Simple 

   SGP DPV 

Mean 52080 9303 

Standard Deviation 31808.4 12791.35 

t-Test 5.5800 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.10 Summary of the statistical computation for the Simple Sequence Induction 
Problem (DPV Scheme) 

 
 

 

Sequence Induction–Fibonacci 

   SGP PV 

Mean 6547500 2937087 

Standard Deviation 1676770.47 455915.61 

t-Test 9.2920 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.11 Summary of the statistical computation for Fibonacci Sequence Induction 
Problem (PV Scheme) 
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Sequence Induction–Fibonacci 

   SGP DPV 

Mean 6547500 1266580 

Standard Deviation 1676770.47 675721.69 

t-Test 13.0639 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.12 Summary of the statistical computation for Fibonacci Sequence Induction 
Problem (DPV Scheme) 

 
 

 

Artificial Ant–Santa Fe 

   SGP PV 

Mean 42000 24240 

Standard Deviation 41091.68 16983.53 

t-Test 1.7863 

Level of Confidence 90% 

t38 (from t-Distribution) 1.686 

Decision  Reject H0 

Table  8.13 Summary of the statistical computation for Artificial Ant Problem on Santa Fe 
trail (PV Scheme) 
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Artificial Ant–Santa Fe 

   SGP DPV 

Mean 42000 5309 

Standard Deviation 41091.68 4838.94 

t-Test 3.9658 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.14 Summary of the statistical computation for Artificial Ant Problem on Santa Fe 
trail (DPV Scheme) 

 
 

 

Artificial Ant–Los Altos Hills 

   SGP PV 

Mean 16600 7636 

Standard Deviation 6199.66 3139.43 

t-Test 5.7687 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.15 Summary of the statistical computation for Artificial Ant Problem on Los Altos 
Hills trail (PV Scheme) 
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Artificial Ant–Los Altos Hills 

   SGP DPV 

Mean 16600 8243 

Standard Deviation 6199.66 3939.34 

t-Test 5.0880 

Level of Confidence 95% 

t38 (from t-Distribution) 2.0244 

Decision  Reject H0 

Table  8.16 Summary of the statistical computation for Artificial Ant Problem on Los Altos 
Hills trail (DPV Scheme) 

 
 
For each of the above tables the t-Test values are calculated as per (8.2) and (8.3). 

Once the level of significance is set, the critical values for the appropriate statistical 

distribution can be found. It should be pointed out that the level of confidence was 95%, 

except for one of the problems (Artificial Ant – Santa Fe trail) where it was 90%. The critical 

values divide the rejection and non-rejection regions as shown in Figure  8.2.   The computed 

test statistics are compared with the critical value to determine whether the test statistic falls 

within the rejection or non-rejection region. The statistical decision of whether the null 

hypothesis (H0) is rejected is based on this comparison of the computed test statistic with the 

critical value. If the computed test statistic is greater than the critical value from the t-

Distribution, i.e. if it falls within the rejection region, then the null hypothesis (H0) is 

rejected. By rejecting the null hypothesis (H0) at a given level of significance α, it is 

statistically proven that the alternative hypothesis (H1) is correct. This would indicate that 

there is a difference in the performance means and based on the results the proposed 

population variation schemes do show their superiority. 
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Figure  8.2 Regions of rejection and non-rejection for the t-Test for the difference between 
two means 

 

8.2 A Preliminary Word on Diversity 
 

Maintaining or increasing diversity is generally and conventionally considered as 

beneficial in GP. The importance of diversity as a crucial feature in avoidance of premature 

convergence is consistently cited in the GP literature  [73]  [223]  [227]  [273]  [275]. There 

exist numerous possible definitions of diversity in GP. The term diversity can be referred to 

as the diversity of genotypes (structural diversity) or behavioural difference (phenotypes). 

Structural differences do not guarantee behavioural differences and frequently imply that two 

structures are not identical. The term variety was used in  [170] to indicate structurally unique 

individuals or programs. Two identical structures will produce the same behaviour. Hence, it 

was argued  [189] that genotypic diversity is a sufficient upper bound of population diversity. 

Consequently, a decrease in genotypic diversity would necessarily cause a decrease in unique 
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fitness responses. The structural representation in GP lends itself to more fine grain structural 

measures. Thus, many structural diversities have been defined such as the number of 

different structures (individuals, programs, or genotypes)  [189], the edit distance between 

structures in the population  [58]  [73] and other composite measures  [49]  [151]. For example, 

edit distance diversity, which provides a fine grain description of population structural 

differences, is based on the distance between every individual in the population and the best 

fit individual found so far in the run. In the standard edit distance measure two trees are 

overlapped at the root node counting the non-identical overlapping nodes. Two different 

nodes score a distance of 1, whereas equal nodes score a distance of 0. The edit distance is 

then the sum of all different nodes which is normalised by dividing it by the size of the 

smaller tree. Another example providing a more abstract view of the population is the 

pseudo-isomorphs, which are less computationally expensive than edit distance and are found 

by defining a three-tuple of <terminals, non- terminals, depth> for each tree. The number of 

unique three-tuples is the diversity measure. The more detailed a measure is the more 

computation it will require and thus, it is required to find informative and inexpensive 

measures.  

The measure of success is however the fitness of a solution or behaviour in the 

problem’s environment. Such measures compare differences between the populations’ fitness 

values at a given time. This is in line with the focus of GP which is driven by a performance 

goal or fitness improvement and not by the level of structural diversity. Moreover, the 

selection mechanism, which chooses individuals to produce the next generation, selects 

individuals based on fitness. Consequently, phenotypic diversity measures (measures based 

on fitness) are quite important. Some examples of phenotypic diversity measures are 

discussed in  [272]  [273]. It has been suggested that phenotypic diversity measures appear to 



Population Variation in canonical GP 209

be superior to genotypic measures  [32]  [33]  [151]  [275]. Consequently, in this chapter only 

phenotypic measures have been used for evaluation and analysis of diversity. 

8.3 Phenotypic Diversity Measures 
 

Genetic heterogeneity, or diversity, is considered as one candidate for useful 

statistical measure in this chapter. Specifically as described in the previous subsection 

phenotypic diversity, which counts the number of unique fitness values in a population, plays 

a significant role in evaluation of diversity. The phenotypic diversity measures used in this 

chapter are mainly based on the concepts of entropy and standard deviation. The classical 

interpretation of entropy H comes from the second law of thermodynamics introduced by 

Clausius to represent the change of state when an increment of energy (dQ) is added to a 

body as heat at an absolute temperature T during a reversible process as defined by (8.5).  

 

∫ ⎟
⎠
⎞

⎜
⎝
⎛=Δ

statefinal

stateinitial T
dQH      (8.5) 

 

This was later interpreted statistically by Boltzman. Entropy represents the disorder in 

the system of particles. Within the context of GP, the entropy measure represents the chaos of 

the system with respect to the distribution of fitness values. Entropy H(P) represents a 

measure of population diversity. The entropy describes the number of unique phenotypes and 

how the population is distributed over the existing phenotypes. An entropy measure was 

introduced in  [273] as defined by (8.6): 
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The fitness class pj is the proportion of the population occupied by population 

partition. A partition is considered as each possible different fitness value, but could be 

defined to include a subset of values. High entropy describes the presence of many unique 

fitness values where low entropy describes a population which contains fewer unique fitness 

values and where many individuals may have the same fitness. Hence, an increase in entropy 

represents an increase in diversity. Although the entropy is consistently and mainly used as a 

measure for phenotypic diversity in the literature, in addition the standard deviation s is in 

some instances used in this chapter as defined by (8.7). 

 

∑
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The fitness of each individual and the average fitness in the population of n 

individuals are denoted by fk and f
)

 respectively. Entropy plots and other statistics such as 

standard variation will be used in the following sections as a measure for phenotypic 

diversity.  
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8.4 Analysis of Static Population Variation 
 

In this section, our understanding of static population variation is further extended by 

analysing and evaluating both the reduction and increment schemes. Specific data from 

multiple runs of specific problems are extracted to conduct this analysis. 

8.4.1 Reduction Profiles 

Three specific reduction profiles, namely linear, quadratic and exponential, as shown 

in Figure  8.3 are used for this analysis. Based on the reduction profiles, it is expected that 

PV-LR and PV-QR perform similarly with PV-ER behaving quite differently. Towards the 

initial stages of the run, the amount of reduction in population is in the order of PV-QR, PV-

LR and PV-ER. However, towards the end of the run the order of individuals in the 

population is reversed. The question arises at which stage during the evolutionary process the 

presence of higher individuals is critical. It was noted in chapter 6 that the actual profile in 

use is in fact problem dependant. In addition, it was observed that as the amount of reduction 

was increased, there was an improvement in terms of computational effort. However, the 

improvement stopped once the amount of reduction was beyond a certain threshold. Any 

reduction beyond this value was considered to be detrimental as the GP did not have a 

sample space big enough to perform efficiently. 
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Figure  8.3 Sample linear, exponential and quadratic reduction profiles 
 

As can be seen in Figure  8.4 and as it was expected based on the reduction profile, the 

PV-LR and PV-QR algorithms to perform similarly. Both of these algorithms exceeded the 

PV-ER scheme in terms of performance. Furthermore, there is a slight improvement in 

performance in PV-LR over PV-QR. This can clearly be observed in Figure  8.5 where it 

takes much less effort to reach a given fitness threshold for PV-LR than the other reduction 

profiles. 
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Figure  8.4 Reduction profiles Deg-4 Regression Problem: average best fitness-generation 
comparison 
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Figure  8.5 Reduction profiles Deg-4 Regression Problem –Effort for a given cut-off fitness 

 

It is believed that PV-ER may suffer in performance due to lower population 

diversity. A quick glance at Figure  8.6 confirms this notion.  

ER LR QR 
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Figure  8.6 Reduction Profile Deg-4 Regression Problem - Entropy 
 

Although the phenotypic diversity of PV-QR is more than PV-LR in the initial and 

middle stages of the evolutionary process, the extra computational burden is not worthwhile 

in discovering the global optimum. In this instance, the PV-LR seems to be the optimal 

reduction scheme. Any reduction scheme in the vicinity of this scheme or traversing similar 

reduction profile as that of the PV-LR profile will result in optimum performance and can be 

considered as the “threshold” for reduction. Any lesser reduction will perform worse than the 

threshold or optimum profile as it is subjected to higher computational effort due to higher 

population levels and superfluous burden in evaluating fitness values for extra individuals 

than are essential. Any higher reduction than this threshold will also be outperformed by the 

optimum profile, as it will suffer from the lack of indispensable population diversity to solve 

a given problem. 
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8.4.2 Increment Profiles 
 

Three specific increment profiles of linear, quadratic and exponential are drawn on 

for the analysis of PV-I, as shown in Figure  8.7. Based on the profiles, it is expected that PV-

LI and PV-QI achieve similar results as far as computational effort to reach an expected 

fitness is concerned, but it is expected that PV-EI will act a bit differently. PV-EI starts off 

with a larger value of initial population whereas PV-LI and PV-QI begin with a very small 

initial population.  
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Figure  8.7 Sample linear, exponential and quadratic increment profiles 
 

The amount of increment for PV-EI is steady whereas for PV-QI and PV-LI it is 

much larger. Moreover, the final population size of the PV-LI and PV-QI is a good deal 

larger than the PV-EI scheme. The main question is if the evolutionary process starts with a 

much smaller population size, does it still have the capacity to progress productively. In this 

instance, the GP will be well ahead than for the other case when it starts off with a much 

larger population size, as it does not unnecessarily waste computational effort at the 
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beginning, where the majority of the individuals are performing poorly, and can use its main 

computational effort later on when the individuals have evolved and may have a higher 

fitness value. Another matter that may require consideration is at which stage during the 

evolutionary process that having a larger number of individuals can result in a better 

performance. This would determine the incremental value of the population size and the 

timing within the evolutionary cycle. The best performing scheme in terms of computational 

effort, for this problem, is the PV-LI, as can be seen in Figure  8.8. 
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Figure  8.8 Increment profiles Deg-4 Regression Problem –Effort for a given cut-off fitness 
 

This highlights the fact that a large population size after the individuals have evolved, 

containing high fitness values, has a much better impact for this problem than a large 

population size initially where almost all the individuals are performing poorly. PV-LI 

outperforms PV-QI indicating that the extra individuals at the beginning were critical to its 

success, implying that there exists some critical population size that GP will need to start off 
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with. This should be reflected in the fitness plot (Figure  8.9), where PV-LI should have 

individuals with much higher fitness at the beginning. One would also expect that the entropy 

(Figure  8.10) to be higher for the PV-LI than for PV-QI. In addition, the entropy should be an 

incrementing function as new individual are continuously injected into the population. 
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Figure  8.9 Increment profiles Deg-4 Regression Problem: average best fitness-generation 
comparison 
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Figure  8.10 Increment Profile Deg-4 Regression Problem – Entropy 
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8.4.3 Increment versus Decrement 

In this section, the best performing increment scheme for this problem, namely PV-LI 

is weighed against the best performing decrement scheme PV-LR. As per the previous 

subsection, when different increment schemes were being compared, it was observed that a 

higher starting population would not be as effective as starting with a lower population size 

such as in the PV-LI. Accordingly, it is expected that PV-LI should outperform PV-LR, 

which can clearly be seen in Figure  8.11. PV-LR starts with much higher fitness (Figure  8.11 

and Figure  8.12) as it has more individuals at the initial stage of evolution but soon PV-LI 

catches up, having expended much less computational effort. 
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Figure  8.11 PV-LI vs. PV-LR - Deg-4 Regression Problem (Effort-Fitness) 
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Figure  8.12 PV-LI vs. PV-LR - Deg-4 Regression Problem (Fitness-Generation) 
 

 

In addition, the fitness continues to improve in PV-LI as new individuals are 

continuously infused into the system, whereas in PV-LR fitness steadily approaches an 

asymptote. It is believed that this could be the reason for converging or decreasing diversity 

in the latter case while an increasing diversity in the former situation. A diversity plot can 

plainly reveal this idea and validate this hypothesis. 
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Figure  8.13 PV-LI vs. PV-LR- Deg-4 Regression Problem (Entropy) 
 

As can be seen in Figure  8.13, in the case of PV-LR the diversity initially is larger 

than in the case of PV-LI, as it starts off with a much larger initial population size, and the 

diversity continues to grow as the GP starts exploring the landscape but as there is a 

continuous removal of individuals PV-LR eventually experiences a reduction in its 

phenotypic diversity. On the other hand, PV-LI continuously instils new individuals into the 

evolutionary process increasing the diversity. Although, the standard deviation of the two 

schemes follows similar trends, towards the end of the generation a significant reduction in 

this measure is detected (Figure  8.14). 
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Figure  8.14 PV-LI vs. PV-LR- Deg-4 Regression Problem (Standard Deviation) 
 

8.4.4 Increment Does Not Work in Some Instances 

Two problems (Deg-4 Regression Problem and artificial ant problem), where PV-LI 

is successful and unsuccessful, are compared. It is believed that PV-I will not be successful if 

it starts off with a population size that is below the value of the critical size which is 

necessary for the individuals to evolve effectively. In this instance, it almost gets stuck at a 

given fitness level, as it did not start with a population level rich enough to progress. More 

importantly, for problems where there is not much room for improvement (when the fitness 

landscape is flat), PV-I cannot function efficiently. At these instances a reduced population 

level would be more beneficial. Figure  8.15 shows the incremental fitness improvement thus 

far for the two problems where PV-LI was successful and unsuccessful. In the former case 

the fitness improvement was of the order of 67%, whereas in the latter case the fitness 

improvement was a mere 7%. In addition, it is believed that in problems where PV-I is 
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successfully progressing the phenotypic diversity will steadily increase, whereas in problems 

where PV-I is performing poorly, the diversity would decreasingly converge.   
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Figure  8.15 Incremental Fitness Improvement thus-far 
 

Three measures of phenotypic diversity of range, standard deviation and entropy are 

used to illustrate this point. The Fitness Range is the difference between the best-performing 

and the worst-performing individuals thus far. As it can be seen in Figure  8.16 the Fitness 

Range is continually increasing in the problem where PV-LI is operating efficiently, whereas 

in the problem where it is not as effective, there are fluctuations in the fitness range with a 

decreasing cyclic pattern. Figure  8.17 shows the standard deviation. Similar trends are 

observed for the measure of standard deviation, where it is an increasing function when PV-

LI is performing well. Finally, the entropy for the two problems is displayed in Figure  8.18. 

As it can be seen from all the figures, for the problems that PV-LI is not suitable the 

phenotypic diversity measures all are decreasing functions. 
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Figure  8.16 Fitness Range- Performance comparison of PV-LI in 2 problems 
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Figure  8.17 Fitness Std Deviation- Performance comparison of PV-LI in 2 problems 
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Figure  8.18 Entropy- Performance comparison of PV-LI in 2 problems 
 

8.5 Dynamic Population Variation 
 

By delving in at the pivot function, our understanding of dynamic population 

variation can be broadened. Next a brief examination of why Dynamic Population Variation 

works is undertaken. This section will finally conclude by taking a closer look into the 

stagnation phase. Explicit data from multiple runs of different problems are used to carry out 

this analysis.  

8.5.1 A Closer Look at the Pivot Function 

The population size is ultimately controlled by the pivot function. The pivot function 

determines whether population size is to be incremented or decremented. Table  8.17 can be 

deduced using equations 6.1, 6.2, 6.10, 6.11 and 6.13 with the period T set to 1. DEC denotes 

a reduction (decrement) in population size and INC an increment in population size. The 

main three columns in the table below are each of the three pivot functions DIFF, GRAD and 

DIV. The change in the characteristic measure from generation to generation could be very 
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small or large. The population can be considered as progressing or regressing as far as the 

characteristic measure is concerned. However, the progress or regress from generation to 

generation may remain constant, improve or decline. P, R and N stand for progress, regress 

and No (or Nil) progress respectively. P-P identifies a progress in characteristic measure 

within the previous cycle followed with another observed progress in the existing cycle of the 

evolutionary process. Similarly, P-R defines a progress in characteristic measure in the 

previous cycle followed by an observed regress in the current cycle. Analogous definitions 

are used for P-N, N-P, N-N, N-R, R-P, R-N and R-R. This table is designated as “Pivot 

Function Table of Actions”. The Table is divided into four main quadrants where there is an 

observed change in the characteristic measure. These four quadrants are highlighted with 

different levels of grey shading for easier identification and grouping of similar observed 

behaviour as far as the characteristic measure is concerned. The middle section of the table, 

which does not have any shading, signifies no change in the characteristic measure from 

generation to generation. Using the Pivot Function Table of Actions, the behaviour of each of 

the pivot functions (DIFF, GRAD and DIV) can easily be inferred. 
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Small Changes Large Changes  

DIFF GRAD DIV DIFF GRAD DIV 

Improving DEC DEC DEC DEC DEC DEC 

Constant DEC DEC INC DEC DEC DEC 

 

P-P 

Declining DEC INC INC DEC INC DEC 

P-N Stops DEC INC INC DEC INC INC 

P-R Regressing DEC INC DEC DEC INC INC 

N-P Progressing DEC DEC DEC DEC DEC DEC 

N-N No Progress DEC DEC INC DEC DEC INC 

N-R Regressing DEC INC INC DEC INC INC 

R-P Progressing INC DEC DEC INC DEC DEC 

R-N No Progress INC DEC INC INC DEC INC 

Improving INC DEC INC INC DEC INC 

Constant INC DEC INC INC DEC INC 

 

R-R 

Declining INC INC INC INC INC INC 

Table  8.17 Pivot Function Table of Actions 
 

When the characteristic measure is the best-performing individuals the behaviour of 

the pivot becomes more predictable. Firstly, as elitist is utilised we can only be in the middle 

section of the table and in the first and second quadrants, i.e. the top quadrants with the 

lightest grey shadings. Therefore, DIFF will constantly remove individuals from the 

population. This is clearly visualised in the Figure  8.19. 
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Figure  8.19 Population Size for DIFF pivot function using Elitist Strategy when 
characteristic measure is the best-performing individuals – Regression Problem (Deg-4) 

 

Towards the beginning of the evolutionary cycle, it is expected that the fitness of the 

best-performing individuals improve, however as the evolutionary process progresses, it will 

be difficult to maintain this level of improvement and hence it is anticipated that the fitness 

values are either improving in small steps or the progress comes to a halt. Therefore, the drift 

of the population levels would be increasing for DIV and decreasing for DIFF. This tendency 

of decrease initially in the beginning followed by increase in population size for DIV is 

clearly discerned in Figure  8.20. 
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Figure  8.20 Population Size for DIV pivot function using Elitist Strategy when characteristic 
measure is the best-performing individuals - Deg-4 Regression Problem 

 

It should be noted that such generalisations cannot be deduced for other characteristic 

measures, such as mean or average high performing individuals etc. (Figure  8.21 and Figure 

 8.22). Although, it can be predicated that the tendency for DIFF will be the removal of 

individuals for the mean characteristic measure, as the mean will generally be increased from 

generation to generation, it would not be a continually decreasing function as was the case in 

DIFF with best-performing individuals (Figure  8.19).  In this instance, there will be stages 

where the population level will be increased (see Figure  8.21) and hence it would be 

estimated that the final population level for DIFF with mean selected as the characteristic 

measure would be higher than for DIFF with best-performing individuals selected as the 

characteristic measure. The location of these surges of increments would be quite 

unpredictable.  
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Figure  8.21 Population Size for DIFF pivot function using Elitist Strategy when 
characteristic measure is the mean fitness- Deg-4 Regression Problem  
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Figure  8.22 Population Size for DIV pivot function using Elitist Strategy when characteristic 
measure is the mean fitness- Deg-4 Regression Problem 
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The combination of pivot function and characteristic measure ultimately determines 

the reduction or increment of the population size and thereby indirectly controls the progress 

of the GP system within the evolutionary cycle. 

8.5.2 Why DPV Works 

Dynamic Population Variation provides an opportunity for the population size to 

grow and to diminish in the same run of an evolutionary cycle in response to specific 

measures with a heuristic feedback mechanism for decision making. These specific measures 

can be considered to be sensors of a desired criterion such as performance or diversity etc.  

The working of Dynamic Population Variation can be best expounded by an example 

and the following explanation. While there is significant improvement observed with the 

characteristic measure, the Dynamic Population Variation simply removes individuals from 

the population set and thereby saves on computational effort, which may have been 

unnecessarily wasted. The extra individuals at this stage of the evolutionary process may be 

regarded as redundant. However, as the improvements come to stagnation or commence to 

decline, the Dynamic Population Variation increases the population size by injecting new 

individuals (fresh blood) to ensure that the improvements can be maintained and steadily 

continue. At this time, the increased level of population size is justified and does not result in 

a redundant computational effort. This concept is clearly exemplified in Figure  8.23. 
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Figure  8.23 Average Fitness for DIFF using mean as characteristic measure - Deg-4 
Regression Problem 

 

In Figure  8.23, the black dotted line represents the periods where population 

reduction is occurring and solid bolded grey line represents stages within the cycle where 

population increment is taking place. Interestingly, the standard deviation follows a similar 

pattern, even though phenotypic diversity is not directly formulated into the characteristic 

measure. The reader is referred to Figure  8.24. 
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Figure  8.24 Fitness Standard Deviation for DIFF using mean as characteristic - Deg-4 
Regression Problem 

 

This highlights the verity that population variation has a close relationship with the 

phenotypic diversity. The entropy plot is also displayed in Figure  8.25. It should be noted 

that this graph does not follow the same pattern as in the last two Figures. The entropy 

function simply converges to a maximum possible level. 
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Figure  8.25 Entropy for DIFF using mean as characteristic measure - Deg-4 Regression 

Problem 
 

The remarkable point is that the entropy function was converging towards a definite 

threshold. However, as further individuals were infused into the evolutionary environment, 

the horizontal asymptote was shifted further up as a result. This resulted in a 48% 

improvement in the threshold towards which the entropy function was converging. 

The following note is needed to be accentuated. The best performing Dynamic 

Population Variation (DPV) regime can only be based on an optimal specific pivot function 

and a characteristic measure that best represents stagnation. The author believes a very robust 

pivot function could be formulated using the “Pivot Function Table of Actions” introduced in 

this chapter and by investigating which arrangements within this table will result in optimal 

performance, rather than investigating assorted forms of mathematical formulas for the pivot 

functions. Figure  8.26 summarises the cooperation with the evolutionary process required to 

obtain optimal results. It can be visualised that the identification of stagnation and 

stagnation-beyond-repair is of utmost importance. The term stagnation-beyond-repair refers 
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to a stage within the evolutionary cycle, where no modification or action can revive the 

population set to bring it out of stagnation. At this stage, the best way forward would be 

abrupt termination. As the proposed pivot functions do not currently have this feature of 

abrupt termination, a ferocious reduction of individuals in the population set could create 

such a side-effect. In the following subsection, a brief investigation into the relationship of 

different measures and stagnation is undertaken.  

 

Figure  8.26 The required cooperation with the evolutionary process necessary to obtain 
optimal results. 

 

8.5.3 An Insight into Stagnation  

In this subsection, various characteristic measures are examined to identify any 

possible trends that exist in their behaviour for runs where the run may be classified as an 

unsuccessful run perhaps due to depletion of rich individuals and hence resulting in 

stagnation. In addition, possible inclinations that may be present in successful runs for the 

same characteristic measures are looked at and comparisons are made between the two 

studies to recognise any emerging distinguishing patterns. One hundred independent runs are 

used in the study of this section. The successful runs are those, which approximately solve or 

100% solve the problem, whereas runs which fail to reach the termination criterion are 

termed as unsuccessful runs. All the figures in this subsection are each comprised of three 

sets of graphs. The first graph shows the trends of the chosen characteristic measure in 

twenty selected successful runs, the middle graph presents the tendencies of the same 

Population is significantly 
progressing 

Progress slows down 
or comes to halt or 
deterioration begins 

Decrement     Increment Any previous of the 2 earlier 
 

cycles can repeat 

Abrupt Termination 

Evolutionary Process 

    Stagnation    Stagnation-beyond-repair 



Population Variation in canonical GP 235

measure in twenty unsuccessful runs and the final graph is the superimposing of the previous 

two graphs for ease of comparison.  The first few characteristic measures looked at herein 

represent the best and worst individuals and their difference. In the former case, the measure 

is simply based on one individual within the population, but in the latter case on two 

individuals. The degree-4 Regression Problem is used in this study. 

 

Figure  8.27 Fitness of best performing individual selected as characteristic measure  
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The first characteristic measure is the best performing individuals, which is shown in 

Figure  8.27.  As it can be seen in Figure  8.27, both successful and unsuccessful runs show 

similar trends. The graphs are increasing functions ( 0≥
dg
df ), but the fitness grows slightly 

faster in successful runs than unsuccessful runs.  Although the differences are quite small, the 

fitness of the best performing individual could be selected as a characteristic measure for 

measuring stagnation. 
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Figure  8.28 Fitness of worst performing individual selected as characteristic measure  
 

 

No meaningful drift appears in the graph of the fitness of the worst performing 

individual (Figure  8.28). The fluctuations appear to be quite noisy as similar to Gaussian 

white noise, although its power spectral density here would not be completely flat. Therefore, 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 7 14 21 28 35 42 49 56 63 70 77 84 91

Generation

Fi
tn

es
s 

of
 W

or
st

 P
er

fo
rm

in
g 

In
di

vi
du

al

Various Successful Runs

Avg Successful Runs

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90
Generation

Fi
tn

es
s 

of
 W

or
st

 P
er

fo
rm

in
g 

In
di

vi
du

al

Various Unsuccessful Runs

Avg Unsuccessful Runs

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 7 14 21 28 35 42 49 56 63 70 77 84 91

Generation

Fi
tn

es
s 

of
 W

or
st

 P
er

fo
rm

in
g 

In
di

vi
du

al

Various Successful Runs

Avg Successful Runs

Various Unsuccessful
Runs
Avg Unsuccessful Runs



Population Variation in canonical GP 238

the fitness of the worst performing individual should not be selected as a characteristic 

measure.  

 

Figure  8.29 Fitness Range selected as characteristic measure 
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behaviour of the worst performing individuals. The next two characteristic measures are 

based also on one individual, but the individual concerned is not the extremes within the 

population set. 

 

Figure  8.30 Fitness Median selected as characteristic measure 
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the best performing individuals. However, if each successful and unsuccessful graph is 

inspected separately, it can be seen that the changes are sometimes erratic. But the median on 

average appears to be the same in the beginning stages of the evolution and it is towards the 

end that it can be used as a distinguishing feature for separating successful runs from those 

which are not successful. Fitness UPQ (Figure 8.31) shows equivalent tendencies, but the 

changes are slightly less sporadic and in addition, the differentiation of successful runs from 

unsuccessful runs can commence earlier. It can be argued that UPQ may outperform the 

median measure. 

The next two measures (fitness average and mean of high performing individuals) do 

not take into consideration merely a single individual for decision making. The latter uses a 

selected set of individuals, namely the cream of the crop or the elites, whereas the former 

utilises the entire population. Figure  8.32 shows the progress of average fitness as the 

evolutionary cycle is progressing. Average fitness shows promising trends for discriminating 

between successful and unsuccessful runs. However, it may be claimed that the mean fitness 

of the top performing individuals (Figure  8.33) could provide a better measure for stagnation 

as these individuals play a major role in progressing towards termination criterion than the 

set of the worst performing individuals. The progress of the lower performing individuals 

may not therefore be as critical and could distort the correct assessment of advancement of 

individuals or the stagnation of the evolutionary process. 
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Figure  8.31 Fitness UPQ selected as characteristic measure 
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Figure  8.32 Average Fitness selected as characteristic measure 
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Figure  8.33 Mean Fitness of Top performing individuals selected as characteristic measure 
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therefore this measure could be employed for determination of stagnation from phenotypic 

diversity point of view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  8.34 Fitness Standard Deviation selected as characteristic measure 
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Figure  8.35 Entropy selected as characteristic measure 
 

With only one exception, all successful runs exhibit an increasing function when entropy is 

the selected characteristics measure. However, the unsuccessful runs show a sudden decrease 

in levels of entropy at times. This behaviour can be exploited to identify stagnation. At these 
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times, a proposed methodology for enriching the population set should be employed to bring 

the population out of stagnation. 

In general, most of the measures studied in this subsection reveal their own merits for 

use as a characteristic measure for assessing the progress or stagnation of the evolutionary 

process. A whole study (in more detail and depth) devoted to this subject, taking into account 

the characteristic measures herein and newly defined measures, would strongly be 

recommended as a possible field of future research or study. 
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CHAPTER 9 

 

9 CONCLUSION  
 
 
 
“We don’t know one millionth of one percent about anything”, Thomas Edison. 
 
 
 
 
 
 
 
 
 
 

9.1 Summary and Concluding Remarks 
 

In the first chapter of this thesis, an overview of the Evolutionary Algorithms (EA) 

was presented. The chief components, which play a major role in the algorithm, were 

succinctly introduced. A brief literature survey of various research in the field of GP was 

presented. The fundamental principles of the Genetic Programming (GP) paradigm and its 

foundations are mainly based on the Genetic Algorithms (GA). For this reason, a brief peek 

into the Genetic Algorithms was inevitable. Thereafter, a thorough introduction into the 

theory of the Genetic Programming paradigm was launched. The majority of papers and 

books published have focused their efforts in examining or illustrating applications of the GP 

paradigm to various disciplines. Comparatively, very little research within the GP community 

has concentrated its efforts on devising schemes to improve the performance of GP. As a 

result, this work was primarily focused on investigating one possible method for improving 

the performance of GP. Subsequently, a comprehensive survey on all the current schemes 
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proposed to improve the performance of GP was performed. These suggested modifications 

were then systematically categorised. This work took a glance at one way of improving the 

performance of Genetic Programming, namely population variation in GP. 

Initially, the notion of static population variation was scrutinised. A new population 

variation (PV) scheme was recommended, whereby the size of the population was varied 

during the execution of the Genetic Programming system. Within this new scheme the initial 

population size was made to be different to the initial size of the standard Genetic 

Programming at its optimal or at least close to optimal starting population size. The 

population size was varied such that the worst case computational effort of the PV scheme 

was never greater than that of the standard Genetic Programming. Various schemes for 

altering population size under this proposal were propositioned to determine whether the 

nature of the "population variation", i.e. the way the population is varied during the search, 

has any significant impact on GP performance. Various reduction and increment profiles 

including a random profile were studied. Experimental evidence was produced indicating that 

population variation can significantly improve the performance of GP, provided that the 

fitness landscape was not plateaued. Moreover, it was demonstrated that every specific 

problem has its own most favourable profile. 

Next, we delved into the concept of Dynamic Population Variation. Various 

innovations for dynamically varying the population size during the run of the Genetic 

Programming (GP) system were explored. The effectiveness of these innovations was 

investigated and it was confirmed that the new ideas do have the capacity to provide 

solutions at a lower computational effort compared with the standard genetic programming 

and previously reported algorithms, including the new PV algorithms. 
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In conclusion, this study produced experimental evidence that the static and dynamic 

population variations can both in general significantly improve the performance of the 

Genetic Programming system by reducing the computational effort to reach a given fitness 

level. The newly devised static Population Variation proved to be superior to the plague 

operator  [79] and the newly proposed innovations for dynamic population variation 

demonstrated their superiority over standard Genetic Programming and all the population 

variation schemes previously reported  [79]  [81]  [164]. 

9.2 Future Research 
 

In this section, interesting research potentials for population variation are identified. 

Then, some of the open areas of research within the Genetic Programming paradigm together 

with possible and recommended future trends in this discipline are emphasised. 

9.2.1 Future Research in Population Variation 

An understanding and awareness of the timing or stage during the evolutionary 

process at which the population size is to be changed would form the ultimate prerequisite in 

devising the most powerful and exclusive population variation methodology. Although such a 

task may be signified as almost unattainable, a joint theoretical and/or empirical study in this 

topic may deem to be beneficial. This can further refine the relationship between stagnation 

and population variation. Further studies on population variation based on phenotypic 

diversity such as entropy or variance/standard deviation is also suggested. But then the 

question of “Does diversity play a more significant role at different stages of the evolutionary 

process?” may arise and need to be answered. It was concluded in  [34] that variation in 

phenotypic  diversity is problem dependant and its adjustment would likely be crucial at 

different stages of evolution. More importantly, it was concluded that the type and amount of 

diversity required at these different stages of evolution remains unclear. So a clearer 
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understanding of the requirements for variation in diversity may need to be addressed first 

prior to engaging in such research. Next, further research on population variation based on a 

combined approach of using both the phenotypic diversity and the characteristic measures 

used in this work may be fruitful.  

Supplementary investigations in different pivot functions are also advised. It is urged 

to explore all the various combinations of the “Pivot Table of Actions” for altering 

population size. It is believed that the ultimate and most powerful pivot function could be 

devised using the “Pivot Table of Actions” introduced in this work, rather than using some 

new forms of mathematical representations for the pivot functions. 

In addition, the proposed PV schemes can be applied to the other population based 

algorithms, such as Evolutionary Strategies (ES) and Genetic Algorithms (GA).  

9.2.2 Future Research in Genetic Programming 

Some promising areas of future research, according to the author’s opinions, can be 

outlined as follows. A complete theoretical analysis of evaluating and measuring difficulty in 

GP could be pivotal. Further in-depth research in understanding the influence of diversity in 

various stages of evolutionary process in GP is called for. GP contains a phase of exploration 

followed by exploitation and the determination of type and the amount of diversity needed at 

these different evolutionary times is imperative. It is believed that exhaustive investigations 

into the issue of diversity will be worth pursuing in conjunction with performing some new 

systematic operation to remedy the lack of diversity.  

Examination of different measures for stagnation and premature convergence could 

be most promising together with newly invented methodologies to either bring the population 

out of stagnation or abruptly terminating a run and commencing a new run with the gained 

experience and knowledge of the previous run, i.e. incorporated memory.  
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An understanding of how to highlight and flag sub-trees that are the main reason for 

success of the individual is crucial and new operators could be used to expose these highly 

competitive genes by keeping an updated genes library and incorporating them into the new 

individuals.  

Extremely little research has been conducted in the field of implicit adaptation or self-

adaptive control, i.e., modifications and parameter control are encoded as a genome and are 

evolved implicitly with the individual. The author believes that further breakthrough success 

may be achievable by exploring self-adaptive control. 
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Appendix C – List of Symbols 
 
 

e
iC  The effective complexity of program i 

 
a
iC  The absolute complexity of program i 

D Depth of a tree 
Dinitial Maximum initial tree depth 
Devolution Maximum depth of a tree during the evolution 
F Function Set 
fed Frequency of editing  
fi The fitness of the individual i 

e
if  The effective fitness of the individual i 

g Generation number 
G Maximum number of generations  
G Genotype space 
H Schema/Schemata 
H(P) Entropy of a population P 
K Alphabet cardinality 
L Length of character string 
m Number of meta-symbols 
M Population size  
NI Number of individuals 
NS Number of schemata 
P Phenotype space 
Pc or pc Probability of crossover 
pdiff(g) The probability that the offspring produced by 1-point crossover between 

programs h and ĥ  does not match H, given that h matches H and ĥ  does 
not match H. 

d
ip  The probability of destructive crossover 

Pen Probability of encapsulation  
Pip Probability of selecting an internal (function) point 
Pm or pm Probability of mutation 
Pp Probability of permutation 
Pr Probability of reproduction 
R Number of independent runs 
Rε Computational effort ratio  
Rλ AES ratio  
RSR Success rate ratio 
s Standard Deviation 
S Solution space 
T Terminal Set 
X  Sample mean 
* “Don’t care” Symbol in a schema 
ε Computational Effort per run  
εc Probability of disruption due to crossover 
εm Probability of disruption due to mutation 
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PVε  Computational effort of the PV scheme  
SGPε  Computational effort of SGP 
λ Average number of Evaluations to a Solution 
Φ  The space of the population 
Π   The multiset (set of all programs) 
Ω  The space of all possible sub-expression in extractable from Φ  
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Appendix D – Acronyms and Abbreviations 
 
ADF Automatic Defined Functions 
AES Average number of Evaluations to a Solution 
AI Artificial Intelligence 
AIM-GP Automatic Induction of Machine Code with Genetic Programming 
ALU Arithmetic Logic Unit 
APP application nodes 
AppGP APP GP 
AR-GP Adaptive Representation GP 
BDD Binary Decision Diagrams 
BMOPP Biased Multi-Objective Parsimony Pressure 
BNF Backus Naur Form  
CGP Cartesian Genetic Programming 
CFG Context-Free Grammar 
cGA Compressed GA 
CMOS Complementary Metal-Oxide Semiconductor 
CPU Central Processing Unit 
DAGS Directed Acyclic Graphs 
DGA Double-based Genetic Algorithm 
DNA Deoxyribonucleic Acid 
DNF Disjunctive Normal Form 
DPV Dynamic Population Variation 
DSP Digital Signal Processing 
EA Evolutionary Algorithms 
EAS Elastic Artificial Selection 
EC Evolutionary Computation 
EDI Explicitly Defined Introns 
EI Evolutive Intron 
EP Evolutionary Programming 
ES Evolution Strategies 
FCTS Fully Covered Tournament Selection 
FIFO First-In-First-Out 
FPS Fitsness Proportionate Selection  
FSM Finite State Machines 
GA Genetic Algorithms 
GA-P Genetic Algorithms-Programming Hybrid 
GBC Grammar-based Crossover 
GBIM Grammar-based Initialisation Method 
GBM Grammar-based Mutation 
GBX Grammar-based Crossover 
GDC General Diversity Control  
GE Grammatical Evolution 
GEGEP Gene Estimated Gene Expression Programming 
GEP Gene Expression Programming 
GGP Graph genetic programming 
GGGP Grammar-guided genetic programming 
GLiB Genetic Library Builder 
GMPE Grammar Model-based Program Evolution 
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GNP Genetic Network Programming 
GP Genetic Programming 
GPNN Genetic Programming Neural Network 
GPP Genetic Parallel Programming 
HP High Performing 
IGP Improved GP 
ILP Inductive Logic Programming 
IMDL Improved Minimum Description Length  
IMGP Isolated Multipopulation Genetic Programming 
JFET Junction Field Effect Transistor 
LAGEP Layered Genetic Programming 
L-GP Linearly structured GP  
LISP  LISt Programming 
LNO Larger neutral offspring 
MA Memetic Algorithms 
MA Module Acquisition 
MAP Multi-ALU Processor 
MDL Minimum Description Length 
MGP Multi-population Genetic Programming 
MHC Maximum Homologous Crossover 
ML Machine Learning 
MOSFET Metal-Oxide Semiconductor Field Effect Transistor 
MSE Mean Square Error 
NFL No Free Lunch Theorem 
NLNO Non-larger neutral offspring 
NN Neural Networks 
NNO Non-neutral offspring 
NOP No Operations 
PC Personal Computer 
PGP Page-based genetic programming 
PTC Probabilistic Tree-Creation 
PV Population Variation 
PV-ER Population Variation-Exponential Reduction 
PV-I Population Variation-Increment 
PV-LI Population Variation-Linear Increment 
PV-LR Population Variation-Linear Reduction 
PV-R Population Variation-Reduction 
PV-RAN Random Population Variation 
PV-SR Population Variation-Step Reduction 
PV-QR Population Variation-Quadratic Reduction 
RDC Refined Diversity Control 
SAMC Self-Adaptive Multi-Crossover 
SCPC Strong Context Preservative Crossover 
SGP Standard Genetic Programming 
SI Self Improvement 
SIM Speciating Island Model 
SNO Smaller neutral offspring 
SPEA Strength Pareto Evolutionary Algorithm 
SR Success Rate 
SRF Sequence Referencing Function 
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SSAC Selective Self-Adaptive Crossover 
STROGANOFF STructured Representation On Genetic Algorithms for Non-linear 

Function Fitting 
STS  Standard Tournament Selection 
TAG Tree-adjoining Grammar 
TAG3P+ Tree-adjoining Grammar Guided Genetic Programming 
TGP Traceless Genetic Programming 
TM Turing Machine 
XOHC Crossover with Hill Climbing 
XOSA Crossover with Simulated Annealing  
UPQ Upper quartile 
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Appendix F – List of Special Functions 
 
a(f) Arity of a function 

)( ksC ←  The probability that crossover picks expression s in program k 
)ˆ,( hhC  The set of indices of the crossover points in the common region between 

the program h  and the program ĥ  
E [ ] The expected value operator 
f(H,g)  Average fitness of a schema H at generation g 

)(gf  The average fitness of the population at generation g 
i(H,g) The number of instances of H at generation g 
l(H,k) Represents the schema obtained by replacing all of the nodes above point 

k with * 
L(H,k) The hyperschema produced by replacing the nodes between the crossover 

point k and the root node with * and all the sub-trees connected to those 
nodes with # 

m(H,g+1)  Expected number of occurrences of schema H in the next generation 
N(j) The size of the program j matching the schema H 
N(H) The length of the schema H (the total number of nodes) 

)ˆ,( hhNC  The number of nodes representing the common region between the 
program h  and the program ĥ  

O(H) Schema Specificity 
P(M,i) Cumulative probability of satisfying the success predicate for generations 

between 0 and i. 
PLOG Protected logarithm  
PROGN Two arguments Connective function. The connective function executes the 

first argument and then the second argument in sequence. 
PROGN3 3-arguments Connective function 
PROGN4 4-arguments Connective function 

),( sjiP ←  The probability of inserting expression s in program j to create program i 
 p (x , g) The probability of selection of program x at generation g 

),( gHp  The probability of selection of schema H at generation g 
),,( gjHp d  The probability of disruption of schema H contained in program j 

R(z)  Number of independent runs with a success probability of z 
),( dnSRF  Sequence Referencing Function - returns the value of the previously 

computed nth term, provided 10 −≤< Jn  (J is the index position) and 
otherwise it returns the default of d. 

u(H,k) Represents the schema obtained by replacing all of the nodes below point 
k with * 

U(H,k) The hyperschema produced by replacing the subtree below the crossover 
point k with # 

δ(H) Defining length 
δ(x) Returns 1 if x is TRUE, otherwise 0 
%  Protected division operator 
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Appendix G – Critical Points of the t-Distribution 
Critical Values of t [202]

For a particular number of degrees of freedom, entry represents the
critical value of t corresponding to a specified upper-tail area (α)

UPPER-TAIL AREAS

Degrees of 
Freedom 0.25 0.10 0.05 0.025 0.01 0.005
1 1.0000 3.0777 6.3138 12.7062 31.8207 63.6574
2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248
3 0.7649 1.6377 2.3534 3.1824 4.5407 5.8409
4 0.7407 1.5332 2.1318 2.7764 3.7469 4.6041
5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0322
6 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074
7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995
8 0.7064 1.3968 1.8595 2.3060 2.8965 3.3554
9 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498
10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693
11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058
12 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545
13 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123
14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768
15 0.6912 1.3406 1.7531 2.1315 2.6025 2.9467
16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208
17 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982
18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784
19 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609
20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453
21 0.6864 1.3232 1.7207 2.0796 2.5177 2.8314
22 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188
23 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073
24 0.6848 1.3178 1.7109 2.0639 2.4922 2.7969
25 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874
26 0.6840 1.3150 1.7056 2.0555 2.4786 2.7787
27 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707
28 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633
29 0.6830 1.3114 1.6991 2.0452 2.4620 2.7564
30 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500
31 0.6825 1.3095 1.6955 2.0395 2.4528 2.7740
32 0.6822 1.3086 1.6939 2.0369 2.4487 2.7385
33 0.6820 1.3077 1.6924 2.0345 2.4448 2.7333
34 0.6818 1.3070 1.6909 2.0322 2.4411 2.7284
35 0.6816 1.3062 1.6896 2.0301 2.4377 2.7238
36 0.6814 1.3055 1.6883 2.0281 2.4345 2.7195
37 0.6812 1.3049 1.6871 2.0262 2.4314 2.7154
38 0.6810 1.3042 1.6860 2.0244 2.4286 2.7116
39 0.6808 1.3036 1.6849 2.0227 2.4258 2.7079
40 0.6807 1.3031 1.6839 2.0211 2.4233 2.7045  
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Appendix H – Summary of Parameters for each Problem 
 

Parameter Value 

Terminal Set Regression Problem: T ={X} 
Even Parity Problem: T ={X,Y,Z,W} 
6-Symmetry Problem: T ={X,Y,Z,W,K,P} 
Recursive Induction: T ={0,1,2,3,J} 
Simple Induction: T ={0,1,2,J} 
Artificial Ant problem: F ={MOVE,TURN-RIGHT,TURN-LEFT } 

Function Set Regression Problem: F ={+,×, -,%} 
Even Parity Problem: F = {NAND,NOR} 
6-Symmetry Problem: F = {AND,OR,XNOR} 
Recursive Induction: F ={+,×, -,SRF} 
Simple Induction: F ={+,×, -} 
Santa Fe Trail: F ={IF-FOOD-AHEAD,PROGN} 
Los Altos Trail: F ={IF-FOOD-AHEAD,PROGN,PROGN3,PROGN4} 

Number Fitness Cases Constant creation regression problem: 20 
Cubic regression problem: 20 
Even parity problem: 16 
Digital symmetry problem: 64 
Recursive Induction: 20 
Simple Induction: 20 
Santa Fe Trail: 89 
Los Altos Hills Trail: 157 

No. of generations G 90 
Probability of cross-over 90 
Probability of reproduction 10 
Probability of choosing internal 
point 

90 

Sequence Induction 
And Even Parity Problem (values 
the same as recursive problem) 

Initial Population Size 
Recursive Problem: 
PPV-R(0)=7000  and PPV-I (0)=3040                                        
M=PSGP(g)=Pplague(0)=5000, ΔP(Δg)= -100   
Plague removes 100 individuals per generation. 
Simple Induction Problem: 
PPV-R(0)=600 and PPV-I (0)=200                                       
M=PSGP(g)=Pplague(0)=300, ΔP(Δg)= -10    
Plague removes 10 individuals per generation. 
Some other Parameters 
Generally, PV-SR Step Size = 100. evenly spaced. 
mPV-ER= -0.01 (exponential rate of reduction) 
Generally, P(g)PV-RAN was limited to ±25% of M with step change of  ±20. a and b were set such 
that P(G)=0.1M 

Artificial Ant Problem,  Regression 
Problem and Boolean symmetry 
problem 

Initial Population Size 
PPV-R(0)=900  and PPV-I (0)=10                                        
M=PSGP(g)=Pplague(0)=500, ΔP(Δg)= -10    
Some other Parameters 
Generally, PV-SR Step Size = 100, evenly spaced.. 
mPV-ER= -0.01 (exponential rate of reduction) 
Generally, P(g)PV-RAN was limited to ±25% of M with step change of  ±20. Plague removed 10 
individuals. 

Termination Criteria 
(A expression that has a fitness of:) 

Constant creation regression problem: 20 
Cubic regression problem: 20 
Even parity problem: 16 
Digital symmetry problem: 64 
Recursive Induction: 20 
Simple Induction: 20 
Santa Fe Trail: 89 
Los Altos Hills Trail: > 130 

Max initial depth 6 
Max depth after x-over All: 10,  Except Artificial Ant problem: 14 
Basic Selection Fitness Proportionate 
Spousal Selection Fitness Proportionate 
Creation of initial Population Ramped half-and-half 
Elitist Strategy TRUE 
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