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Abstract 

Robots and their control systems are becoming increasingly complex as 

growing demands are made for their intelligent operation. Automated design 

processes reduce the complexity involved in designing robots, often 

leveraging dynamic simulation technology to evaluate potential robot control 

system designs. However, physics simulators do not provide a perfect 

representation of the real world. Subsequently, control systems designed in a 

virtual world will often fail to transfer to the real world. 

This thesis presents the design, implementation and evaluation of the Physics 

Abstraction Layer (PAL), a uniform component based software interface to 

multiple physics engines.  PAL can be used to validate the results of an 

automated design process, increasing the likelihood that a controller will 

function in the real world. All the physics engines fully supported by PAL 

were evaluated in a set of benchmarks assessing the key simulation aspects 

including friction and restitution models, collision detection and response, 

and the constraint solvers. None of the thirteen physics engines evaluated 

was found to perform adequately in all aspects. This result indicates that 

multiple physics engines should be combined when evaluating a controller 

design to achieve valid results. 

A genetic algorithm was used to automatically design robot control systems 

for two application areas. In the first application, a spline controller was 

evolved for bipedal robot locomotion using the PAL’s rigid body simulators 

and a high fidelity multibody simulator. The controllers evolved using PAL 

outperformed the controllers evolved using previous approaches. In the 

second application, a wall following PID control system was evolved for an 

Autonomous Underwater Vehicle (AUV). The control systems that were 

evolved using multiple fluid dynamics models outperformed all control 
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systems evolved using either a Lagrangian Smoothed Particle Hydrodynamics 

(SPH) model or a Eulerian model.   

The biped and underwater vehicle experiments demonstrated that using PAL 

to combine physics simulators improved the validity of evolved controllers 

for complex robots in dynamic environments. In the future, robot simulation 

packages should provide interfaces to multiple physics engines. This would 

enable engineers to select the physics engines most appropriate to their task, 

and increase the likelihood of a control system developed in a simulator 

successfully transferring to the real world. 
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1 Introduction 

Robots are becoming progressively more complex and increasing demands 

are made for their intelligent operation in challenging environments. 

Consequently the control systems for robots have grown exponentially in 

complexity from early numerically controlled machines to fully autonomous 

robots. As the control system complexity increased engineers started looking 

for tools that would assist in the controller design process.   

One such tool is virtual prototyping, which enables engineers to rapidly 

evaluate new designs using computer based simulations without requiring 

intermediary physical prototypes.  To date, no simulation has been able to 

perfectly reproduce the dynamics of the real world.  In practice many 

simulators make simplifying assumptions of real world physics in order to 

ease the implementation difficulty and improve the computational efficiency. 

The discrepancies between the virtual world and the real world can cause 

control systems developed in a simulator to perform poorly in the real world.  

Rodney Brooks voiced his skepticism regarding the transfer of control 

programs from simulations to real robots (1): 

“There is a real danger (in fact, a near certainty) that programs which 

work well on simulated robots will completely fail on real robots because of 

the differences in real world sensing and actuation—it is very hard to 

simulate the actual dynamics of the real world.” 

This is a sentiment shared by a number of researchers and is widely 

acknowledged in the simulation field (2)(3).  However, a skilled engineer can 

use their previous experience to recognise undesirable and unrealistic results 

from a simulation tool and modify their workflow or controller design 

accordingly.   
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Even with additional tools the complexity of robotic design is being hindered 

by the capacity of engineers to understand the impact of all possible design 

variables. As a result a growing body of researchers aimed to create 

automated design processes based on the same underlying simulation 

technology used in virtual prototyping tools. 

Automated design processes generate robot designs by exploring potential 

designs based on measurements made from direct design evaluations.  

Automated design processes do not have an external source of previous 

experience to guide them, so the process learns from thousands of candidate 

design trials to generate progressively improved designs. Thus, it must 

maximize the reliability of the information gained from each design 

evaluation; otherwise it could lead to faulty designs. 

The key concern for an automated design process is how the controllers 

should best be evaluated. If they are evaluated using real robots in the real 

world, then physical robots must be constructed and evaluated in real time. 

This would take a prohibitively long time for any automated design process 

to generate a controller design, and all the benefits gained from virtual 

prototyping approaches would be lost. 

An alternative evaluation method is to employ a simulator which can 

evaluate the designs faster than real time, without requiring physical robot 

construction. However, in evaluating its designs it may come to depend on 

characteristics of the simulation that do not match the behaviour of the real 

world. Without an alternative means to verify the design, it would be unable 

to recognize and correct poor designs that will most likely fail in the real 

world. 
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One approach to resolve this is to fuse simulation and hardware approaches 

for automated design (4) (5). By validating the simulation’s results on real 

hardware the differences between the virtual and real worlds can be 

eliminated. However, the reliance on the physical robot’s hardware makes it 

difficult to design robots for exotic environments (e.g. space, fluids), and 

makes robot structural design changes time-consuming and costly. This limits 

the usefulness of these approaches for rapid virtual prototyping. 

As an alternative, Jakobi (3) proposed “Minimal Simulation”, an automatic 

design approach based purely on limited simulations. This approach focused 

on accurately simulating only a few key aspects critical to the target 

behaviour of the robot. Although this method has reported a number of 

successes, it requires an engineer to select the key simulation features and 

build a custom simulator.  Furthermore, the simulator is only capable of 

generating one behaviour for the robot and can not be generalized. Again, 

this makes the automatic development of control systems for complex 

robots in complex environments difficult. 

For a general automatic design approach to succeed in developing controllers 

for complex robots in dynamic environments a complete physics simulation is 

required. In order for the controller to operate in the real world, the physics 

simulator must provide a mechanism for ensuring that only the valid sections 

of the simulator physics are relied upon. This is what this thesis aims to 

achieve. 
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1.1 Scope 

This thesis addresses the development of a software system and design 

technique for automated robot design that allows simulated results to be 

reliably transferred to real robots.  As stated by Brooks, the key concern is 

the differences between the dynamics of the simulation and the real world. 

This problem has been studied extensively in the Evolutionary Robotics field. 

In this field, the process of transferring a controller from a simulation to a 

real environment is often referred to as “crossing the reality gap” (3).  Nofi 

and Floreano (2) outline three key obstacles to overcoming the reality gap:  

1. Different physical sensors and actuators, even if apparently 

identical, may perform differently because of slight differences in 

the electronics or mechanics, even when exposed to the same 

external stimulus. 

2. Physical sensors deliver uncertain values, and commands to 

actuators have uncertain effects. 

3. The body of the robot and the characteristics of the environment 

require accurate reproduction in the simulation. 

This thesis will focus on the correct reproduction of the robot and 

environment. The concerns relating to the uncertainty of the performance 

differences in the sensors and the representative noise models have already 

been extensively studied by other researchers and will not be investigated 

here (2) (3).   

Since the aim of this thesis is to create a general approach applicable to any 

robot form, a number of physics simulation topics will be addressed including 

those concerning rigid body dynamics and computational fluid dynamics. 

Some restrictions shall be made on the detail of these simulation models, 
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including aerodynamics, thermodynamics, detailed sensor and actuator 

modelling, and power distribution. 

As automated design techniques require thousands of design evaluations, it 

is important to consider the computational efficiency of the physics engine. 

Thus the dynamics models employed will often be simplified models of the 

real world, whilst still accepted to be physically valid (6). It is important to 

quantify how they approximate the real world’s physics and this topic will be 

investigated in depth. 

The performance characteristics of the automated design system itself will 

not be treated in detail. There is ongoing research into improving the 

performance of automated design techniques and evolutionary algorithms, 

such as genetic algorithms, and this is largely considered to be beyond the 

scope of this thesis. 

As this thesis is focused on the valid simulation of the environment and the 

robot’s dynamics, the evolved control systems will only consider lower level 

locomotion control problems and behaviours.  Robot morphology, sensor 

and actuator placement, and higher level tasks such as motion planning will 

not be considered.   

There are several different ways of judging whether a controller successfully 

transfers into reality after being evolved in a simulation (3).  Some authors 

provide direct quantitative comparisons between simulations and reality, 

others provide a more subjective view. Generally, the presentation of the 

results will depend on the automated design process and robot control task. 

The controllers in this thesis will be evaluated according to higher level 

quantitative comparisons and qualitative analysis.   
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1.2 Related Work  

There have been a large number of attempts at automating an aspect of the 

robot design process, with over 100 publications a year since 1997 discussing 

an aspect of the process (7).  However, relatively few have focused on 

overcoming the transitioning of control programs from a simulated 

environment to the real world. Of the researchers that do concern 

themselves with crossing the reality gap, only a handful deal with robots that 

have complex dynamics (3)(8). 

Although there have been a number of experiments involving the evolution 

of a robot’s morphology, or co-evolution with the control system, there are 

only a few software packages that have been made publicly available as a 

result of the research work (9)(10). 

1.2.1 Automated Robot Design 

Automated design processes typically employ an artificial evolution process 

to automatically generate a design. To illustrate how this process works, a 

simplified example is given (Refer to Chapter 5 for an in-depth treatment).  

 An artificial evolution process may begin with a set of randomly generated 

design candidates. These are evaluated and assigned a score indicating how 

close the design candidate is to its goal.  The highest scoring candidates are 

then reproduced to create a new set of candidates. This process of evaluating 

candidates, selecting the best, and creating new candidates is repeated until 

eventually the overall goal of the design task is met. 

One of the earliest and most widely recognized work in automated design is 

Karl Sims work in 1994 on evolving virtual creatures (11). Sims evolved the 

morphology and a neural controller for varying locomotion behaviours of 

simple computer animated creatures. The software package used dynamic 

simulation to calculate the movement of the creatures and had a parallel 
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implementation on a supercomputer to speed up the computation of the 

evaluations for the genetic algorithm. 

To apply these techniques to robotics requires a more in-depth dynamics 

model and sensor and actuator models. In 2000 Leger released a software 

package “Darwin2K”(9)  that allowed the automatic design of various robots, 

including a manipulator and a walking robot for space trusses.  Whilst the 

dynamics were more complex than that of Karl Sims work, the evolution of 

controllers was not addressed, and thus the issues relating to the reality gap 

were not investigated.  

This has been addressed by more recent approaches that are discussed in the 

following sections. 

1.2.2 Crossing the Reality Gap 

The process of transferring a controller from a simulation to a real 

environment is often referred to as “crossing the reality gap” (3).  There have 

been a number of approaches attempted in solving the problems faced when 

transferring control from a simulated environment to the real world. There 

have been three main approaches for the transition process: 

1. Traditional high fidelity simulation.  In the high fidelity simulation 

approach the robot is simulated with as much accuracy as possible 

and then control programs are tested in the simulation.  These control 

systems tend to only form the basis for controlling the real robot, and 

the control system is essentially re-implemented on the real robot 

hardware.  

2.  Minimal simulation. With this approach only the critical aspects 

required to represent a robot’s target behaviour are accurately 

modelled. The other aspects are only simulated on a general level, and 

the controller is evolved such as to only rely on the critical aspects.  

Once the higher-level controllers have been completed in the 
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simulation the lower-level controllers are implemented in the real 

world only. This enables the transfer of the high-level control 

programs without requiring re-implementation on the real world 

system. 

3. Robot hardware in the loop. Integrating aspects of the physical robot 

with the simulation system allows for a far more realistic 

representation of the problem task, allowing a much more accurate 

simulation. This approach is similar to the traditional simulation 

approach, except that robot hardware is incorporated to improve the 

quality of the simulation. 

There are advantages and disadvantages to all of these approaches.   

1.2.3 High Fidelity Simulation 

One of the earliest approaches of developing control systems complex 

mechanical robots was the high fidelity simulation approach. McMillan (12) 

developed a dynamic simulation software package, “Dynamechs” for land 

and underwater robots in 1995. With this software a six legged underwater 

walking robot AQUAROBOT(13) was simulated to serve as a testbed for 

walking control algorithms.  

The control algorithms developed for the AQUAROBOT were implemented 

three times, once in a simple forward kinematic simulation, once in the 

forward dynamics simulation software developed by McMillan, and finally 

again on the physical AQUAROBOT.   Although this design process provided a 

number of advantages in allowing the researchers to optimize their control 

strategies, the inability to directly transfer control algorithms from the 

simulation to the real robot meant that only limited testing could be done in 

the simulation environment and the controller had to be implemented 

multiple times. 
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To enable autonomous design of the robot control systems, the evolutionary 

robotics approach was suggested by Husbands and Harvey in 1992 (14). The 

need for a simulation environment for this approach was stressed, as many 

of the robot designs tested in the simulation would have taken too long to 

evaluate on the robot hardware or damage the robot hardware. Husbands 

and Harvey acknowledged that the approach would provide only limited 

potential on real robot hardware, and proposed the use of adaptive 

controllers, such as neural nets to overcome this. Additionally, simulation of 

simple robots, lower resolution sensors and using empirical noise data was 

suggested. 

A number of simulators have also been created specifically for certain vehicle 

classes. Stanley et al. (15) evolved a neural controller to serve as an 

automobile crash warning system with an open source vehicle simulator.  

This control system was then re-implemented on a real mobile robot using 

the controller evolved in the simulation as a basis (16).  Brutzman(17) 

developed an Autonomous Underwater Vehicle simulator and verified the 

simulation results using extensive real world test example data. 

Typically, the traditional high fidelity simulation approach is not used to 

directly transfer final results from the simulation to the target hardware. 

Instead, the intermediary results are transferred to the physical robot and 

evolution continues on the hardware (2). 

Nofi and Floreano (2) outlined the problems associated with crossing the 

reality gap for traditional simulations and identified the modelling of the 

sensor and actuator behaviour as a key difficulty. Miglino (18) solved this 

issue for a two wheeled mobile robot navigation task by recording extensive 

data sets for each sensor.  The environment was sampled using the robot 

hardware, and in the case of distance sensors, each object in the 

environment was sampled for 180 orientations and for twenty different 
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distances (2). Miglino noted that the range and angular sensitivity of identical 

sensors varied up to two orders of magnitude.  There have been claims that 

the empirical measurements, whilst quite extensive, were still too coarse 

(19). Nevertheless, controllers for morphologically simple robots evolved in 

simulations based on this technique continue to perform satisfactorily when 

transferred to the real environment (2). 

This demonstrated that although it is possible to use high fidelity simulations, 

a very accurate empirical model for the sensors and actuators is required. 

This limits the application of this technique to simple robots and 

environments, as more complex systems become difficult to model due to 

the exponentially increased number of situations that need to be sampled 

when dealing with multiple situations (2). For example, when considering a 

distance reading near two objects, the data must either be re-sampled, or 

generated from a summation. This however introduces significant disparities 

between the simulation and real environment (2). 

To overcome the workload associated with fine grain sampling of real world 

systems, mathematical models of the sensor and actuator behaviour can be 

constructed instead (2). The mathematical models can be based on known 

engineering concepts and the parameters evaluated from empirical data 

(19). To alleviate the problems associated with the uncertainty in sensor 

readings and actuator commands, noise can be introduced into the 

simulation at all levels (2)(19). 

Although the traditional simulation approach has had moderate success in 

transferring evolved robot controllers to the real world (2)(18)(19), there are 

a number of difficulties involved in the approach, including balancing the 

level of noise in the simulation (2) and the highly detailed dynamics models 

required (1)(2).   
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Lipson and Pollack (20) investigated more complex robot morphologies using 

the high fidelity simulation approach for automated design. They evolved the 

robot morphology and controllers in a virtual environment, then constructed 

the robots using rapid prototyping technology. The evolved controllers were 

successfully transferred to the physical robots directly from the virtual 

environment. As Lipson et al. assert, the fidelity of the mechanical simulation 

will only support simple quasi-static kinematics that can be accurately 

predicted (21). 

This approach has been shown to have limited applicability to complex 

robots due to the complexity involved in constructing an accurate model of 

the robot and the environment (21)(22). 

1.2.4 Minimal Simulation 

The high fidelity evolutionary robotics approach was generally applied to 

robots operating in simple dynamics environments and had rigorous 

empirical measurements of sensor readings.  Furthermore, it was noted that 

controllers evolved in simulations would come to depend on particular 

aspects only available in the simulation, and hence fail in reality (3). Jakobi et 

al. demonstrated that if the noise model is significantly different from the 

real system, then the controller is less likely to work when transferred to the 

real world (19). 

In 1998, Jakobi (3) proposed a solution to these obstacles called “Minimal 

Simulation”. This approach attempted to reduce the differences between 

simulation and reality by only simulating the aspects of the robot and its 

environment that were critical to the success of the control system.  These 

critical aspects (also known as “base-set” aspects) are reliably simulated and 

the aspects deemed to be non-critical (or “implementational” aspects) are 

varied for each trial to be unreliable. As a result, controllers only evolve to 

depend on the reliable aspects of the system.  Furthermore, some variance is 
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introduced to the base-set aspects in order to ensure a robust control system 

is evolved (2). 

This approach requires a human designer to explicitly identify the robot and 

environment base-set aspects, and construct a simulator specific to the task 

that models the robot-environment base-set interactions (2). Additionally, 

the simulator must feature the implementational, or non-base-set aspects 

that do not have a basis in reality.   

As a result, the human designer must first assess the problem task to 

precisely and accurately identify the reliable, valid behaviour of the system, 

and build a simple simulation system that will only allow those behaviours. 

Nolfi and Floreano (2) illustrate cases where problems that are decomposed 

by Jakobi into base-set and implementational aspects eliminate the 

opportunity for some evolvable solutions. This indicates the difficulty of 

correctly identifying valid base-set features for any robotics problem, 

including relatively simple problems, such as two wheeled mobile robot maze 

navigation. Nevertheless, Jakobi successfully applies this method to an 

octopod robot by making a number of simplified assumptions regarding the 

robot’s dynamics (3).  

An octopod robot is statically stable making it relatively simple to control. 

Hornby et. al. successfully apply the minimal simulation approach to a more 

challenging control task, a quadruped gait controller (23).  These successes 

indicate the potential for the minimal simulation approach, however Jakobi’s 

method is extremely specific to the problem task and assumes that base 

assumptions can be made about the problem task to simplify it. This may not 

always be the case. For example, in developing a locomotion controller for a 

biped there are no simplifying assumptions that can be made regarding the 

robot’s dynamics. The entire mechanism must be simulated in order to 

determine if the robot is in a balanced state. 
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As a result, the human designer guides the evolutionary process towards a 

set of solutions, making the approach more of an optimization task, rather 

than an automated design technique (2).   Therefore, it is not feasible to 

construct a universal evolutionary robotic simulator using the “Minimal 

Simulation” approach directly.  

1.2.5 Hardware In the Loop Simulation 

An early attempt to evolve controllers for legged locomotion was by Lewis et. 

al in 1992 (24). To reduce the search space and the cost of evaluating 

controller designs the concept of Staged Evolution was introduced. This 

allows the robot controller to be evolved over multiple phases, starting with 

evolving individual oscillators in the neural net and finishing with the 

evolution of the complete gait.  

This staged approach was extended by Wilson et al. (25), such that early 

phases of the controller evolution were carried out in a simple simulation, 

and the final phase was evaluated on real robot hardware.  A similar 

approach was taken by Miglino et al. (18). These approaches are not strictly 

Hardware-In-the-Loop (HIL) simulation, since the simulation phase ends and 

then the hardware evaluation begins. There is no interchange between the 

simulated controller and the real world controller. 

The automotive industry has invested heavily in creating extremely accurate 

simulations for a number of automotive components. Kendall and Jones (26) 

investigated the differences between traditional simulation, hardware in the 

loop simulation, and prototyping approaches for developing control systems 

for Ford and Jaguar.   They concluded that hardware-in-the-loop simulation 

can replace expensive prototypes. However, they require highly detailed 

models of the controller’s plant and provided limited usefulness outside of 

the plants experimentally verified and predictable input range. 
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Thus, the standard hardware-in-the-loop method suffers from similar 

limitations to the traditional simulation approach taken by Miglino et al. in 

that second-order and unforeseen environment interactions with the robot 

are not possible, as the hardware-in-the-loop is placed in a controlled 

environment.  Detailed models of the simulated system are still required, 

however models and extensive measurements of sensor and actuator data 

are not required, as they are directly represented in hardware. 

1.2.6 Hybrid HIL Simulations 

Zagal et al.  (4) proposed a hybrid simulation and real world architecture 

named “Back to Reality” (BTR). The key feature of the approach that 

minimizes the effect of the reality gap is the co-evolution of the simulation 

model with reality. The architecture is depicted in Figure 1, and consists of 

three learning algorithms. One for evolving the simulated controller, another 

for evolving the physical robot’s controller and finally a learning algorithm for 

modifying the simulation model to better fit the real world data. For the 

evolution of the robot (in both simulation and reality), the experimenter 

provides a fitness function indicating the ability of the controller to achieve 

the desired task.  The simulation model is evolved based on the average 

fitness from both simulation and reality, relative to just the real robot’s 

fitness value. In this way, the discrepancies between the simulator and the 

real-world are slowly minimized until a controller can successfully cross the 

reality gap.  



 

Figure 1 – Back to Reality architecture
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Figure 2 – Estimation-Exploration Algorithm architecture
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of standard CAD tools exist that allow a dynamic model of a robot to be 

constructed.  However, the detail and complexity required of the model is 

quite high. As a result the technique is highly sensitive to discrepancies 

between the real world and the simulation, since any error in the robot 

model can translate to a significant error in the robot’s dynamics limiting its 

applicability to quasi-static mechanisms (21). Finally, due to the complexity of 

the model, the computational effort of evaluating the simulation can be 

quite large. 

 High Fidelity 

Simulation 

Minimal 

Simulation 

Hardware in the 

loop 

Designer 

Experience 

Low Very High High 

Model 

Complexity 

Very high Moderate Low 

Programming 

Effort 

Low High Moderate 

Computational 

Effort 

High Low Low 

Sensitivity to 

Reality Gap 

High Low Low/None 

General Robot 

Simulation 

Yes,  

Quasi-static 

No,  

Simulator specific 

No, 

Hardware specific 

Table 1 – Robot Simulation Techniques 

Minimal simulations require extensive design experience, as the robot 

designer must be able to specify which aspects of the robot and environment 

are to be considered as part of the base-set, and which are not. As a 

consequence, the simulation model is often a simplified version of a more 

complete traditional high fidelity simulation model, reducing the 

computational effort for evaluating the simulation.  
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Differentiating the simulation into base-set and implementational aspects 

greatly reduces the processes sensitivity to the reality gap. However, the 

simulator must be specifically constructed for the robot and its specific 

environment, meaning a significant programming effort is required by the 

robot designer for constructing the simulator. 

The standard hardware-in-the-loop approach also requires considerable 

design experience to know which parts of the robot and its environment to 

reconstruct in the physical world and which parts to simulate. As a result, the 

model complexity is typically quite low, as the most difficult components to 

accurately model are represented in hardware. Therefore, the sensitivity of 

the method to the reality gap is either low or nonexistent (depending on the 

number of components simulated) and subsequently, the computational 

effort in evaluating the model is quite low. Since many of the robot 

components are present in hardware, the programming effort is typically 

restricted to hardware interface programs and a few simulation components. 

The hybrid HIL approaches requires a complete version of the robot 

hardware to be constructed, and therefore cannot be used to evolve a 

robot’s hardware design. Furthermore, both the EEA and BTR approaches 

rely on a single dynamics simulator based on the assumption that it can 

accurately model a wide range of situations. This is not necessarily true (29).  

For an automated design approach only the traditional high fidelity 

simulation approach enables the simulation of any robot morphology, 

without requiring extensive designer input or robot hardware. The minimal 

simulation approach requires the designer to deconstruct the problem into 

base-set aspects, and a standard hardware in the loop approach requires the 

appropriate sensors and actuators to be selected and connected to the 

simulator. The hardware in the loop method therefore requires at least a 

partial construction of the robot. This limits the opportunity for constructing 
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a complete robot design and typically restricts hardware in the loop 

autonomous design approaches to optimization of an existing robot design 

only. 

The minimal simulation approach requires a simulator to be specifically 

constructed for the particular task. This severely restricts the solution space 

and thereby eliminates the option of an autonomous design of the complete 

robot design (e.g. morphology), or of complex dynamical systems. Thus, 

minimal simulation is also an inappropriate choice for a general robot design 

package. 

1.4 Combining Multiple Independent Simulators 

This thesis proposes a modification of the traditional high fidelity simulation 

approach that makes it more amendable to automated robot design capable 

of crossing the reality gap. This is achieved by incorporating aspects of the 

minimal simulation approach through the use of multiple independent 

physics simulators. 

There were two key recurrent themes in the problems highlighted by 

robotics and simulation experts (1)(2)(30) with simulations and the reality 

gap. These were sensor and actuator noise models and the robot dynamics. 

Satisfactory solutions have been proposed for the sensor and actuator noise 

models (2)(19).  

Jakobi (3) proposes a solution to the robot dynamics problem that is robot, 

environment and task specific.  The key realization in the minimal simulation 

approach was to reduce the simulation to a set of critical aspects (base-set) 

that are valid in both the simulation and the real world which the controller 

will rely upon, and varying the rest (implementational).  However, as this is a 

manual process of identifying the base set and implementational aspects, 

there is no existing satisfactory general solution for the robot dynamics.  
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This thesis proposes a method for automatically incorporating the base-set 

and implementational aspects into a physics simulation. This is achieved by 

combining multiple independent simulators, validating each against the 

other.  

Perfectly modelling any real world feature is not possible, even with careful 

empirical validation (3). For example, if the unknown probability distribution 

of an underlying real world process is modelled as a normal distribution, then 

even if it has the same mean and standard deviation there will be aspects of 

this distribution that have no basis in reality (3). Given that there is no 

perfect model for a certain physical feature, it will often be implemented 

differently for each physics simulator. Furthermore, given that different 

simulators are developed with different goals, some simulators may 

accurately model one feature, where another simulator makes a simplified 

estimation (See Chapter 4 for an analysis of this topic). 

As a result, each physics simulator will respond slightly differently for an 

identical task due to the differences in the models employed and the 

implementation details of the physics engine (See Chapter 2).  The aspects 

that will behave similarly will effectively form a base-set for the system, and 

those that differ, will form the implementational aspects. By using multiple 

simulators each aspect will occupy a range across the spectrum from base-

set to implementational, rather than just the binary case. 

This concept is illustrated in Figure 3 and Figure 4. Figure 3 depicts a Venn 

diagram of the features of the real world and the features of a simulator. 

Some properties of the real world will be very accurately modelled by the 

simulator. This is indicated by the green Valid region. Some features of the 

real world will not be represented by the simulator. This is the red Real 

World region. The blue region indicates the section of the simulator that 

does not correlate well to the real world.  
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Figure 3 – The overlap between the real world and the simulated world 

Any control system developed in the simulator that depends on any of the 

features that are only present in the simulated world, will inevitably fail in 

the real world. Jakobi’s solution is to manually label the valid, overlapping 

region between the real world and the simulator as belonging to the base 

set, and the remaining simulated region as implementational.   

The solution proposed in this thesis is illustrated in Figure 4. As more 

simulators are included in the diagram, the region where each simulator 

overlaps is in increasing agreement with the real world. This is represented 

by the green Valid region. Thus, the overlapping region can be treated as the 

valid base-set, without requiring manual labelling. This is based on the 

assumption that each simulator contains a greater region where its 

behaviour matches the real world, than not. The regions indicated in the 

figure in purple indicate an intermediary between the concept of the base-

set and implementational. This is where two of the three simulators agree 

with the real world. 
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Figure 4 – The overlap between the real world and multiple simulators 

This concept can be better explained with a concrete example. Consider a 

control system for a robot that relies on the timing of a foot striking the 

ground. If built in one simulator, the foot will always strike the ground at the 

same time. However, a different simulator may consider air resistance, or 

employ a less accurate integrator, or employ a more accurate collision 

detection mechanism. Each of these aspects will slightly alter the time at 

which the floor-ground contact would occur. 

The closer the agreement between the simulators on the timing of the foot-

ground interaction, the more the timing can be treated as part of the base-

set. The greater the inconsistencies between the simulators, the more the 

timing will be treated as an implementational aspect. 

As a result, a controller must be robust enough to cope with slight timing 

changes in the foot-ground contact in order to function across all simulators. 

It is hypothesized that this degree of robustness will increase the likelihood 

of success when transferring across the reality gap. Conversely, in a single 

simulator, the controller may come to depend on exactly predictable timing 
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for the foot-ground contact, resulting in a controller that would inevitably fail 

in the real world. 

In this manner the controller is prevented from closely relying on one 

particular simulators behaviour.  This is further enforced during the 

evolutionary process. For each control system, a score is assigned in each 

simulator according to how well it accomplishes a task. If one simulator 

provides a significantly different response to the others, it is likely the 

controller will receive a significantly different score. By employing different 

score combining techniques (e.g. average, or median), the influence of this 

simulator can be minimized or negated. This requires a modification of the 

traditional evolutionary controller design methodology. 

The process for the traditional high fidelity simulation approach begins with 

the construction of an accurate model of the robot dynamics, the 

environment and empirically based sensor and actuator models. The 

evolutionary controller design process is then: 

1. Initialize a set of potential controller designs 

2. Evaluate each design in the simulator 

3. Assign a fitness value indicating how well the design solves the desired 

task 

4. Use an evolutionary algorithm to generate a new set of controller 

designs 

5. Return to Step 2, until the task is solved. 

The proposed extension to this is to evaluate the design not just for one 

simulator, but rather on multiple simulators.  This would require re-

constructing the robot, environment model, and control program each time 

for each simulation system. To remove this time consuming requirement, a 

simulation abstraction system is required that can transform a single system 
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representation to a valid representation for various simulators and provide a 

single programming interface (See Chapter 3). 

With such a system, the initial step in the traditional simulation approach 

remains unchanged. A robot designer is still required to construct only one 

model of the robot and its environment. 

Having multiple simulators alters the evolutionary design process: 

1. Initialize a set of potential controller designs 

2. Evaluate each design in a set of simulators 

3. Use statistical methods to assign a fitness value indicating how well 

the design solves the desired task 

4. Use an evolutionary algorithm to generate a new set of controller 

designs 

5. Return to Step 2, until the task is solved within a confidence interval, 

for all of the simulators 

This architecture for the evolutionary design process is similar to the BTR 

architecture proposed by Zagal et al.  (4) (See Figure 1). In the BTR 

architecture the control system is evolved in a simulated environment, and in 

the real world. A learning algorithm is used to modify the simulation model 

to better fit the real world data. In the proposed multiple simulator 

approach, a single evolutionary algorithm evolves a single control system 

evaluated in multiple simulators and is coupled with a statistical fitness 

evaluation method. This effectively couples the learning algorithm and 

evolutionary algorithm structure from the BTR architecture, resulting in a 

new architecture that is depicted in Figure 5. 



 

Figure 5 – Multiple simulation architecture

1.5 Thesis Overview

The remainder of this thesis describes the design, theory and implementation

of the multiple simulation paradigm proposed in this thesis. This primarily 

focuses on the Physi

thesis that interfaces to multiple physics simulators. It follows with a 

description of two applications for walking robots and underwater robots 

and presents experimental descriptions and results. 

Chapter 2 presents a background in dynamic simulation systems and some of 

the different algorithms that can be used to implement a real time dynamic 

simulation package, or “physics engine”.  This is followed by a discussion in 

Chapter 3 on the design and impl
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Layer, a software package that allows a single robot model and control 

system to execute in multiple physics engines in parallel. 

Chapter 4 presents an evaluation of multiple physics engines and highlights 

the different capabilities of each physics engine and their applicability to 

evaluating robot controllers.  

An overview of some control systems and genetic algorithms is provided in 

Chapter 5. The performance of four different genetic algorithms is 

investigated for evolving a walking gait for a simple biped.  

Chapter 6 and Chapter 7 assess the transfer of a control system from 

simulation to reality using the multiple simulator paradigm and provides a 

discussion of the results from a number of experiments. Chapter 6 

investigates a gait control problem for a bipedal robot, comparing the 

performance between a high fidelity simulation and the multiple simulator 

paradigm. The controller for an underwater vehicle is evolved in Chapter 7 

and the results from the combined and individual fluid models employed in 

the simulation are analysed.  

Chapter 8 provides a summary of the contributions and key findings of this 

thesis and outlines future opportunities to build on this work. 
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2 Dynamic Simulation in Physics 

Engines 

Physics engines are software packages that calculate the motion of a system. 

Physics engines can simulate a number of different components including 

particles, rigid bodies, soft bodies, collisions, constraints, materials and fluids. 

Solids such as rigid bodies and soft bodies may all be simulated using the 

same techniques, however, fluids may be simulated using techniques 

incompatible with standard solid simulation techniques.  

Physics engines are not only responsible for maintaining a dynamic model of 

the world, but also for performing collision detection, and calculating the 

world’s current state given the interactions and constraints between bodies 

and the environment. 

One of the main tasks of all dynamic simulation systems is to solve the 

forward dynamics problem. The forward dynamics problem constitutes 

solving for the motion of a system given knowledge of the forces acting on 

the system. This can be solved by maintaining the system’s state and 

describing its motion with ordinary differential equations (ODE). There are 

two basic building blocks for representing dynamics systems(31). Particles, 

that can translate and have mass but no volume, and bodies that occupy a 

volume and thus can rotate. The state vector of a particle is given in Equation 

1, and the state vector for a rigid body is given by Equation 2. The 

corresponding motion ODEs are given in Equation 3 and Equation 4 

respectively. 

����� = �����	���
 

Equation 1 – Particle state vector (32) 
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����� = ����������������� 

Where ����� is the particles state vector 

 ����� is the rigid body state vector 

 x(t) is the position of the body or particle 

v(t) is linear velocity 

 R(t) is the orientation of the body 

P(t) is the linear momentum 

and L(t) is the angular momentum 
Equation 2 – Rigid body state vector (32) 

 

��� ����� = � 	�������/�
 

Equation 3 – Particle motion (32) 

��� ����� = � 	������� ∗ ����������� � 

Equation 4 – Rigid body motion (32) ���� = �������� 

Where F(t) is the total force on the body 

m is the mass of the body ���� is the angular velocity 

I(t) is the inertia matrix of the body ���� is the torque acting on the body 
Equation 5 – Angular momentum (32) 

 

There are a number of factors that influence the characteristics of a physics 

engine. These range from the simulation paradigm, collision detection and 

response to the type of numerical integrator, or whether air resistance is 

considered. As a result each physics engine will provide quite different results 

despite simulating the exact same system. 
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Whilst the simulations computational efficiency is of importance, 

technological optimizations for various platforms make this a difficult 

consideration to thoroughly analyse. This is not of primary concern for this 

thesis. Primarily the analysis will concentrate on the simulators capabilities, 

robustness and accuracy. Efficiency will only be inspected at a high level. This 

chapter provides an overview of the different characteristics that constitute a 

physics engine, highlighting aspects that affect its performance.  

2.1 Solid Body Physics Simulator Paradigms 

There are three major simulator paradigms, the penalty method, constraint 

based methods, and impulse based methods (33). Hybrid methods also exist 

that combine aspects of the other three in order to try to provide more 

functionality or eliminate weaknesses of a particular approach (33) . This 

section provides a brief overview of the three methods. The specific details 

of each method will be clarified in further sections. 

2.1.1 Penalty Based Simulation 

The penalty-based simulation approach represents the simulated model as a 

collection of particles and spring constraints. All bodies are treated as a set of 

particles and interconnecting spring constraints. The interactions between 

bodies are represented in the form of temporary spring constraints. 

Using a particle system based physics engine with a set of spring constraints 

allows the simulation of any meshed shape either as a soft body or as a rigid 

body (depending on the rigidity of the spring constraint). Figure 6 illustrates a 

box simulated with the penalty based method. Each vertex of the box is 

represented by a free moving particle, and each edge of the box is connected 

through a spring. Enforcing the spring constraints such that the springs are 

always at their resting length allow the particle-spring system to emulate the 

behaviour of a rigid body.  
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Figure 6 – Penalty based method box simulation. 

Representing complex shapes using the penalty method results in a large 

number of spring constraints. Typically the shape represented in Figure 6 

would not contain enough springs for a stable simulation, and additional 

cross beam constraints would be added for each surface.  

Penalty based approaches use spring constraints to solve object collisions. 

When two bodies collide or penetrate, a spring constraint is inserted into the 

simulation. The spring constraint is then removed when the bodies are 

separating. The spring compresses for a short period of time during the 

collision and generates the opposing forces required to re-separate the 

bodies. This is illustrated in Figure 7. 
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Figure 7 – Penalty based collision 

The key to penalty-based simulation is the representation of the simulation 

model as a collection of particles and spring constraints. Spring constraints 

can be effectively simulated using Hooke’s Law of elasticity. The general form 

of Hooke’s Law is given in Equation 6 and Equation 7. 

� = ��� 

Where �� is the spring coefficient 

and  x is the distance from the spring’s equilibrium position 
Equation 6 – Hooke’s Spring Law � = ��	� 

Where �� is the damping coefficient 

and  	� is the difference in velocity of the spring’s endpoints. 
Equation 7 - Hooke’s Damping Law 

 

These can be combined to the 3D case as: 

� = −���|�| − � + �� � ∙ �|�| �|�| 
Where L is the distance between the two spring endpoints, �  is the difference between the velocities at the spring endpoints, 

and  R is the rest length of the spring 
Equation 8 – Hooke’s Law (3D) 
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Finding a stable and accurate solution to a large number of interacting 

penalty constraints is a difficult task.  The numerical stability of penalty based 

methods is highly dependent on appropriate choices of penalty constants.  

This method is simple to implement (including deformable and rigid bodies), 

but it is not very robust (33). This makes alternative simulation approaches 

attractive for high fidelity simulations. 

2.1.2 Constraint Based Simulation 

Constraint based methods use analytical constraints to describe the 

interactions between objects. An algebraic constraint equation is constructed 

to represent the range of valid movements for the body. For example, each 

contact constraint is constructed such that each body can only lie on or 

above the surface of another body.   

The total forces acting on a body can be described as a combination of 

independent external forces (e.g. gravity) and the constraint forces (see 

Equation 9). There are many different types of constraints (e.g. hinges, 

sliders) and different possible formulations (e.g. velocity based). Specific 

constraint models are described in Section 2.6. 

"#� = $%��� + $&'(��� 

Where "is the bodies mass properties matrix (mass and inertia),  

 $%��� are the constraint forces, 

and  $&'(��� are the external forces. 
Equation 9 – Forces acting on a body 

The contact and constraint forces can be formulated as a linear system of 

equations. The valid directions in which the constraint allows movement can 

be encoded into a Jacobian matrix, and the magnitude of the constraint 

forces into a scalar vector. This formulation results in Equation 10. 
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$)% = *+,� 

Where J is the constraint Jacobian 

and  ,� is a vector of scalars. 
Equation 10 – Constraint-based force formulation (34) 

Each constraint itself can be formulated as an acceleration constraint. This 

can then be solved simultaneously with the motion equation as a system of 

equations. The constraint function given in Equation 11 is described in more 

detail in Section 2.6. 

-�. = *#� + * 	� = 0 

Where -� is the constraint function, 

Equation 11 – Acceleration based constraint function (34) 

�" −*+* 0 
 �#�,�
 = 0$&'(111111�−* 	�2 

Equation 12 – Simultaneous constraints 

The constraints affecting a body can be simultaneously solved using an 

extended Gauss-Siedel method, or more commonly formulated as a 

nonlinear complementarity problem (NCP) (35).  Solving these can be 

computationally intensive and in some cases may not be robustly solved and 

cause physically unrealistic results (36). For example, the Gauss-Siedel 

method is an iterative solver, and thus some implementations may choose 

not to solve the system completely to reduce the required computation time. 

For some cases the constraints may not be solvable at all (37) (See Section 

2.5). However, some alternative formulations for constraint based methods 

have the benefit of being able to simulate certain common types of multiple 

link constraints very accurately.  
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2.1.3 Impulse Based Simulation 

Impulse based methods apply impulses to instantaneously change the 

velocities of colliding objects. The impulse is calculated in order to prevent 

object interpenetration, and obey friction and energy restitution laws.  For 

example, if two objects collide, an impulse based approach will apply an 

impulse in the direction of the contact normal to the two bodies (See Figure 

8).  This results in a linear and angular impulse on the bodies, altering their 

velocities and causing them to separate. 

 

Figure 8 – Contact point and contact normal 3� = 451� 

Where 3� is the resulting impulse vector 

 4 is the magnitude of the impulse 

and   51� is the contact normal 
Equation 13 – Collision impulse 

To evaluate linked constraints such as ball and socket joints a correcting 

impulse is calculated from the relative velocities of the bodies and the 

desired relative velocity. The resulting impulse is then applied to the two 

bodies in order to satisfy the constraint. This is illustrated in Figure 9. 
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Figure 9 – Correction impulses 

Impulse based methods tend to be faster to compute and simpler to 

implement than constraint based methods, but do not handle resting and 

continuous contacts well.  Unlike the simultaneous constraint based 

approach, each constraint is evaluated sequentially contributing impulses to 

the final overall movement. 

Mirtich provides a comparison of constraint based methods and impulse 

based methods in (38), and a comparison of penalty based methods with 

constraint based methods is presented by Baraff in (6).  

2.2 Integrators 

Numerical integrators are responsible for solving the ODEs that represent the 

fundamental problem of the physics engine (32). Given the forces acting on a 

body, what is its acceleration, velocity and position at a given point in time? 

That is, given mass � and force $ acting on a body, how can we find its 

current acceleration #���, velocity 	��� and position ����? 

	��� = 6 #��� 

���� = 6 	��� 

Equation 14 – Velocity and acceleration 
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The simplest numerical solution to this problem is the explicit Euler’s method 

(32): 

���7 + ℎ� = �7 + ℎ� ��7� 

Equation 15 – Euler integration 

That is, given an initial value �7, we can estimate � at time �7 + ℎ by taking a 

step in the derivative direction.  Given Newton’s second law of motion we 

can express the bodies acceleration as a function of its mass and the forces 

affecting it. Thus the simulation loop can be summarized as: 

��� + ℎ� = ���� + ℎ	��� 

	�� + ℎ� = 	��� + ℎ $� 

Equation 16 – Integration loop 

This simple estimate leads to large numerical inaccuracies, unless a very 

small time step is chosen, which results in a computationally inefficient 

implementation. Different methods of integration are implemented for 

various dynamic simulation systems, creating crucial differences in the 

accuracy of the simulators solutions. Varying the step size of the integrator 

can improve the accuracy, but this will affect the efficiency of the 

simulation(32). More importantly the stability of the solution is dependent 

on the integrator (32).  An implicit integrator can provide an improved 

solution, the implicit Euler approach is given as: 

��� + ℎ� = ���� + 	�� + ℎ�ℎ 

	�� + ℎ� = 	��� + #�� + ℎ�ℎ 

Equation 17 – Implicit Integration loop 
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Implicit integrators are problematic to implement as they require knowing 

the future state of the system (34). These can be approximated from the 

system state but this is a difficult problem to adequately solve. 

A common solution to improving the accuracy of the integrator is to increase 

the order of the estimation to include updates at subintervals of the 

integration. 

���7 + ℎ� = �7 + ℎ� ��7� + ℎ92! �. ��7� + ⋯ + ℎ=5! >=�>�=  

Equation 18 – Taylor series numerical solution to differential equations 

A common approach to solve these differential equations is the Runge-Kutta 

Method (39). Typically, a fourth order method is implemented as it provides 

robust numerical solutions when combined with an adaptive stepping 

method (40). This requires the calculation of the force derivatives given the 

simulations current state and time, adding further variables into the 

implementation. Higher orders are not typically chosen, as it becomes 

difficult to describe the higher order movements of the bodies in the system. 

The integrator stability problems become paramount during collision 

detection.  By controlling the step sizes of the integrator an accurate and 

efficient simulation can be ensured. 

There are three main integrator stepping methods(33). These are fixed time-

stepping methods that update the simulation by a fixed rate, or adaptive 

time stepping methods, such as backtracking and time of impact approaches 

that alter the time step size to improve the simulators performance. 

In fixed-time-stepping, the integrator steps forward by a specified step size 

potentially causing overshooting or deep penetrations. This is illustrated in 

Figure 10, where a sphere moving toward a cube will have its position 



 

updated, and then collision detection will be performed, resulting in a deep 

penetration. 

Figure 10 – Fixed time stepping 

The backtracking approach

forward and collision detection is performed. If a collision occurs, the time 

step is adaptively decreased until the collision states can be correctly solved. 

Figure 11 – Backtracking method

Figure 11 illustrates this, before the sphere’s position is updated, a forward 

step is taken, a collision test is performed

sphere would penetrate the cube. As a result, the timestep is adaptively 

reduced by half. When the physics is updated next, the interpenetration 

between the sphere and the cube will be less, resulting in a more stable 

simulation. 

Time of Impact (TOI) approaches 

the simulator keeps track of estimations of the times of impact calculated 

from the body’s present velocities and accelerations. The smallest time of 

impact is then used to step the simulation forwards. 
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updated, and then collision detection will be performed, resulting in a deep 

 

 

approach(41) is an adaptive solution where a step is taken 

forward and collision detection is performed. If a collision occurs, the time 

step is adaptively decreased until the collision states can be correctly solved. 

tracking method 

illustrates this, before the sphere’s position is updated, a forward 

, a collision test is performed, and it is determined that 

sphere would penetrate the cube. As a result, the timestep is adaptively 

reduced by half. When the physics is updated next, the interpenetration 

between the sphere and the cube will be less, resulting in a more stable 

pproaches (38) are another adaptive solution

the simulator keeps track of estimations of the times of impact calculated 

from the body’s present velocities and accelerations. The smallest time of 

ep the simulation forwards.  

updated, and then collision detection will be performed, resulting in a deep 

an adaptive solution where a step is taken 

forward and collision detection is performed. If a collision occurs, the time 

step is adaptively decreased until the collision states can be correctly solved.  

 

illustrates this, before the sphere’s position is updated, a forward 

and it is determined that the 

sphere would penetrate the cube. As a result, the timestep is adaptively 

reduced by half. When the physics is updated next, the interpenetration 

between the sphere and the cube will be less, resulting in a more stable 

another adaptive solution, where 

the simulator keeps track of estimations of the times of impact calculated 

from the body’s present velocities and accelerations. The smallest time of 



 

Figure 12 – Time of impact method

In the TOI example illustrated above, before a time step is taken, each 

dynamic object calculates the closest distance to the object in front of it. In 

this case, the sphere estimates that it will move further in the next time step 

than the distance between the sphere and the cube. An estimated time for 

the impact is calculated and the simulation is then updated by this time.

The stepping method, integration method, an

the accuracy and robustness of the simulation. An in

effects of the numerical integration method is presented by 

(42) 

2.3 Object Representation

Each object in the 

geometric object. This representation is used during the collision detection 

phase to determine when objects are in contact.  Additionally, the object 

representation may be used to derive physical properties o

as the inertia matrix.
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Time of impact method 

In the TOI example illustrated above, before a time step is taken, each 

dynamic object calculates the closest distance to the object in front of it. In 

sphere estimates that it will move further in the next time step 

than the distance between the sphere and the cube. An estimated time for 

the impact is calculated and the simulation is then updated by this time.

The stepping method, integration method, and integration order all affect 

the accuracy and robustness of the simulation. An in-depth analysis of the 

effects of the numerical integration method is presented by 

Object Representation 

Each object in the simulation must be represented as some form of 

geometric object. This representation is used during the collision detection 

phase to determine when objects are in contact.  Additionally, the object 

representation may be used to derive physical properties o

as the inertia matrix. 

 

In the TOI example illustrated above, before a time step is taken, each 

dynamic object calculates the closest distance to the object in front of it. In 

sphere estimates that it will move further in the next time step 

than the distance between the sphere and the cube. An estimated time for 

the impact is calculated and the simulation is then updated by this time. 

d integration order all affect 

depth analysis of the 

effects of the numerical integration method is presented by Lacoursière in 

simulation must be represented as some form of 

geometric object. This representation is used during the collision detection 

phase to determine when objects are in contact.  Additionally, the object 

representation may be used to derive physical properties of the object, such 
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Figure 13 – Convex mesh sphere (left) and mathematically defined sphere (right) 

Similar to objects in computer graphics, objects in physics engines are 

typically represented as polygonal meshes. However, many simulators 

provide special cases for certain geometric objects (See Figure 13). Typical 

cases for rigid body simulators are spheres, rectangular prisms, cylinders, 

cones, planes, and capped cylinders or capsules.  Thus, some simulators may 

enable increased efficiency and accuracy by supporting more non-polygonal 

geometries. Convex objects (see definition) are generally preferred as they 

allow computationally efficient data representations. 

Set C is convex if and only if the line segment between any two points in C 

lies in C. 
Equation 19 – Convex object definition (43) 

Modern rigid body simulators typically support convex object geometries, 

and allow concave geometries to be decomposed into convex objects(44) 

that can be combined to provide a concave object representation. This allows 

an efficient and accurate solution to collision detection in real time (45). 

Typically, these simulators also allow swept geometries, such as those 

generated through the Minkowski sum (45), or “dilation” operators. One 

advantage of the generation of swept geometries with the Minkowski sum of 

convex objects is that the resultant shape is also a convex object (46). This 



 

enables accurate collision detection with m

as the Gilbert-Johnson

? + @ = A# + B|# C
Where, A is a convex set of a points

  B is a convex set of b points
Equation 20 – Minkowski 

Figure 14 - Minkowski sum of two convex objects 

Deformable objects are usually represented by displacements at finite points, 

called nodal points 

(finite element, mass and spring lattice, etc.). However, converting to nodal 

point representations from polygonal meshes is possible.  A common choice 

for soft body physics is to decompose the polygon geometry into

meshes (49). For other deformable objects, such as cloth, the nodal points 

can be derived directly from the polygonal mesh

methods only provide finite means of r

always be some inaccuracies resulting from the approximating geometries. 

The geometry representation for fluids is highly dependent on the algorithm 

chosen to simulate the fluid dynamics. A common choice for realtime physics 

engines is smoothed particle hydrodynamics

represented by a set of particles.

liquid is solved with a smoothing kernel that in turn determines the volume 

occupied by each particle 
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enables accurate collision detection with minimum distance algorithms such 

Johnson-Keerthi algorithm (47). 

C ?, B C @E 

A is a convex set of a points 

B is a convex set of b points 
Minkowski sum 

Minkowski sum of two convex objects (45) 

Deformable objects are usually represented by displacements at finite points, 

called nodal points (48). The particularities depend on the implementation 

(finite element, mass and spring lattice, etc.). However, converting to nodal 

point representations from polygonal meshes is possible.  A common choice 

for soft body physics is to decompose the polygon geometry into

. For other deformable objects, such as cloth, the nodal points 

can be derived directly from the polygonal mesh(49). Since deformable 

methods only provide finite means of representing geometries, there will 

always be some inaccuracies resulting from the approximating geometries. 

The geometry representation for fluids is highly dependent on the algorithm 

chosen to simulate the fluid dynamics. A common choice for realtime physics 

smoothed particle hydrodynamics, where a liquid surface is 

represented by a set of particles. Each particle occupies a position, and the 

liquid is solved with a smoothing kernel that in turn determines the volume 

occupied by each particle (50). (See Section 2.7 for more details)

inimum distance algorithms such 

 

Deformable objects are usually represented by displacements at finite points, 

icularities depend on the implementation 

(finite element, mass and spring lattice, etc.). However, converting to nodal 

point representations from polygonal meshes is possible.  A common choice 

for soft body physics is to decompose the polygon geometry into tetrahedral 

. For other deformable objects, such as cloth, the nodal points 

. Since deformable 

epresenting geometries, there will 

always be some inaccuracies resulting from the approximating geometries.  

The geometry representation for fluids is highly dependent on the algorithm 

chosen to simulate the fluid dynamics. A common choice for realtime physics 

, where a liquid surface is 

Each particle occupies a position, and the 

liquid is solved with a smoothing kernel that in turn determines the volume 

. (See Section 2.7 for more details) 
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2.4 Collision Detection and Response 

The collision phase can be broadly split into two parts, collision detection and 

collision response. The collision detection part is purely a computational 

geometry problem, formally stated in Equation 21. Although collision 

detection is a computationally expensive operation, exact collision detection 

for convex objects is possible in real time (45).  

? ∩ @ ≠ ∅ ⇔ J C ? − @ 

Equation 21 – Collision intersection between A and B (45) 

Collision detection can be divided into 3 sections: 

• Broad phase collision detection, responsible for grouping nearby 

objects in order to improve the efficiency of the simulator. This is 

achieved through the use of spatial partitioning algorithms. 

• Narrow phase collision detection, responsible for determining if two 

objects collide. These routines may provide additional information, 

such as proximity information for time of impact approaches(33) 

• Contact determination, to isolate the geometric areas where two 

objects are touching and to perform contact analysis as required by 

the simulator paradigm 

An example of the broad phase collision detection is illustrated in Figure 15. 

The objects in the scene are estimated with axis aligned bounding boxes. If 

the boxes overlap, then those objects will pass through to the narrow phase 

collision detection. In this example, the cube on the left would not enter the 

narrow phase, as its bounding box is not overlapping with any other objects. 

The sphere would enter the narrow phase, as its bounding box overlaps with 

nearby objects. 



53 

 

 

Figure 15 – Broad phase collision detection 

There are many different spatial partitioning algorithms. The algorithm 

chosen will typically depend on the computational architecture (e.g. available 

memory) and simulation paradigm.  

Narrow phase collision detection routines fall into two categories, static and 

dynamic collision detection. Static collision detection simply checks if two 

objects are intersecting, without regard to the movement of the bodies(51).  

As a result, some object collisions may go undetected and cause errors in the 

simulation (51), this is sometimes referred to as “Tunneling”. For example, a 

small, fast moving object may pass through a plane if the time step is too 

large. A solution to this is dynamic, or continuous collision detection (51). It 

detects any collisions that have taken place over a given time interval by 

employing swept geometries.  

There are two common approaches to continuous collision detection (46).  

One is to subdivide the movement over the time interval and check for 

collisions within the range of the interval, recursively subdividing the range. 

This provides an inexact solution to the problem (46). The other approach is 

to extend the geometry to be four dimensional, and solve the problem in the 

space-time domain. This enables accurate collision detection (46). 

Other than the errors that may occur from the collision detection, the major 

effect of various collision detection routines is the efficiency of the 

simulation. Nevertheless, errors due to the finite accuracy of the collision 

detection calculations can occur(52). These can sometimes be deliberately 
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introduced to increase the computational efficiency of the simulator (45) 

(e.g. 24bit floating point verses 32 bit, 64 bit or 80bit). 

The contact determination phase can also affect the simulation’s accuracy, as 

some simulators develop contacts over time. During sliding contacts, the 

geometries contact points may be merge, resulting in inaccurate collisions. 

The major factor affecting the accuracy of the simulation with regard to the 

collision system is the collision analysis and response. There are three types 

of collision contacts (53). Resting contact occurs when two colliding bodies 

have a relative velocity of zero (38). If the relative velocity on contact is 

positive non zero, then it is a colliding contact (38)(53). Finally, if the relative 

velocity on contact is negative, then it is a separating contact. 

There are a number of physical properties that can be simulated at the 

collision response phase.  Common properties are restitution, conservation 

of momentum, and frictional forces.  The material properties are discussed 

later in this Chapter, however, these all effect the calculations during the 

collision response phase. When a collision occurs, the total momentum for 

both bodies is equal before and after the collision. Equation 22 provides the 

collision response for the conservation of momentum. 

�KL + �ML = �KN + �MN �KL + �ML = �KN + �MN 

	KN = 	KL + $�K 5 

Where 	KN is the velocity of object a after the collision 

 	KL is the velocity of object a before the collision 

 �K is the mass of object a 

and n is the collision normal 
Equation 22 – Conservation of momentum(53) 

The method used to simulate the response is dependent on the simulation 

paradigm employed.  Penalty methods do not set up systems of equations to 
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be solved in the collision response phase, rather, they typically insert new 

constraints that allow objects to penetrate, but apply forces that cause the 

object to leave the penetrated region. Analytical methods will create an 

additional constraint equation as given in Equation 23. - = �	OMN − 	OKN� ∙ 5 

Where -  is a velocity constraint 
Equation 23 – Non-penetration constraint (54) 

2.5 Material Properties 

Physics engines typically simulate three common properties of materials:  

static friction, kinetic friction, and restitution.  The material properties help 

determine the physics engines response to a collision, in which direction and 

at which magnitude the forces are applied. 

The coefficient of restitution determines the elasticity of a collision. The 

elastic response for two colliding objects is given by: 

�	KN − 	MN� ∙ 5 = −P�	KL − 	ML� 

Where 	MN is the velocity of object b after the collision 

 	ML is the velocity of object b before the collision 

 P is the coefficient of restitution  
Equation 24 – Restitution collision response (53) 

The Coulomb model of friction provides an empirical relationship between 

normal and friction forces at a contact point (55). The traditional model is 

presented below. 

�� = Q��= 

�R = QR�= 

Equation 25 – Coulomb friction 

Where �=is the normal force, Q� and QR are the static and kinetic friction 

coefficients, and �� and �Rare the static and kinetic friction forces.  As a force 
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is applied to a body that rests on a surface, the force is initially opposed by 

static friction.  As the body begins movement, it is opposed by kinetic 

friction. 

To fit Coulomb’s model to constraint based NCP methods, Coulomb’s friction 

cone is often estimated with a friction pyramid, in order to avoid the 

nonlinearities defining the quadratic cone constraints (35)(56). A linear 

friction collision response is given in Equation 26.  Even with linear friction 

approximation a correct solution to the LCP cannot be guaranteed (37). 

Impulse based methods on the other hand can correctly simulate Coulomb’s 

friction model, including transitions between static and kinetic friction (35).  

	(N = 	KM − 	KM ∙ 5 

�S�T%(TU= = QR��.�	KM ∙ 5 − 	KM� 

Where 	( is the tangential relative velocity 

 QRis the static friction coefficient 

 �.  is the normal component of the relative acceleration 

and 	KMis the relative velocity  
Equation 26 – Linear static Coulomb friction (53) 

2.6 Multibody Constraints 

Multibody constraints enable the simulation of different kinds of joints, such 

as ball and socket joints or hinges. Two different methods exist for modelling 

constraints (57). Reduced coordinate methods restrict the number of 

coordinates available to describe a system’s state. Each joint is described in 

the coordinate space relative to the previous joint (See (58)). As a result, only 

one body in the multibody system has full motion freedom (58). Full 

coordinate (or multiplier) methods do not restrict the system state and 

instead employ additional forces to maintain the constraints.  
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Reduced coordinate methods achieve very accurate simulation of joints. 

Nevertheless, certain joint set configurations such as loops are difficult to 

simulate. Full coordinate methods do not restrict the multi-bodies 

configuration. However, this means constraints must be continuously 

enforced. Thus the method is more susceptible to numerical errors and joints 

may begin to drift apart (31).  

Constraints are formulated in terms of an implicit position and/or velocity 

formulation. They are described by a constraint function, -R. The constraint 

function then forms either a position, velocity or acceleration constraint 

equation. For example, -R = 0 is a position constraint, whereas -R = 0 is a 

velocity constraint. 

-R = -R��, �(��, 	(��� 

Equation 27 –Constraint function 

To solve a constraint, we can employ position based, impulse or velocity 

based, and force or acceleration based approaches. To obtain a velocity 

formulation, the time derivative of a positional constraint is required. This 

can be derived using the chain rule: 

-R = >-R>� = >-R>� ∙ >�>� = *	� 

Where * is the constraint Jacobian matrix. 
Equation 28 – Velocity constraint formulation 

Thus, a velocity constraint can be evaluated from the velocity of a body and 

the Jacobian of the constraint equations. The acceleration formulation can be 

found from the derivative of the velocity formulation. 

-�. = *#� + * 	� 

Equation 29 – Acceleration constraint formulation. 
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Traditionally, the constraint-based simulation paradigm employs reduced 

coordinate methods, whereas impulse based methods employ the full 

coordinate approach. As a result, impulse based methods cannot efficiently 

model tightly constrained joints. However, impulse-based methods can 

employ reduced coordinate methods, resulting in a hybrid simulation.  

2.7 Fluid Simulation Paradigms 

The core difference between traditional rigid body physics and underwater 

physics are the liquid effects. These are mostly the drag and lift forces, and 

the buoyancy forces. Two approaches to fluid simulation are possible. The 

fluid effects themselves can be directly modelled and applied to the bodies. 

Alternatively, the behaviour of the fluid itself can be modelled and then the 

fluid’s forces can be applied to the bodies. 

2.7.1 Fluid Effects Modelling  

Directly modelling the fluid forces that are applied to the bodies has the 

advantage of being less computationally intensive than fluid modelling 

techniques. Many of the forces can be experimentally verified providing an 

acceptable model of global effects on a body (59). The interaction of liquid 

between multiple bodies is far more difficult to model using direct 

techniques, and so it is less appropriate for modelling nearby submersed 

bodies (e.g. two ships close to each other). 

Buoyancy forces can be calculated from Archimedes' principle. This requires 

calculating the volume of a rigid body under the surface of a fluid. This 

calculation may require computationally expensive geometry operations. 

Alternatively, the volume can be approximated by dividing all volume 

structures into smaller spheres that represent the overall shape and volume 

of the original structure. For example, a cube structure would be represented 

as eight separate spheres that occupy the equivalent volume of the original 
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cube. (See Figure 16) This provides a computationally efficient method for 

calculating the buoyancy forces on complex objects and reduces the 

complexity of the implementation.  

�M = (VW�X 

Where, 

V is the volume of displaced fluid 

Fb is the buoyancy force 

 W is the density of the liquid 

and g is the gravity force. 
Equation 30 - Archimedes' principle 

 
Figure 16 - Buoyancy sphere volumes for a cube 

The buoyancy force (60) on a sphere is proportional to the volume of the 

sphere that is under water. The volume of the sphere that is under the water 

is given in Equation 31. From this the buoyancy force can be calculated using 

Archimedes' principle given the density of the liquid and the gravity force 

(See Equation 30). 

V = Yℎ(3[ℎ − ℎ9�3  

Where, 

V is the volume of the sphere under the liquid level 

h is the height of the sphere that is under the liquid level 

and r is the radius of the sphere 
Equation 31 – Volume of sphere below a given height 
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Drag and lift effects can be applied to a body through the drag equation. The 

drag force acts in an opposing direction to the body’s motion, and lift forces 

act in a perpendicular direction. The drag forces can be directly calculated 

using Equation 32. Similarly lift forces can be calculated using Equation 33. 

\ = 12 WV9?-� 

Where, 

 D is the drag force 

 W is the liquid density 

 A is the frontal area 

 Cd is the drag coefficient 

and  V is the relative velocity 
Equation 32 – Liquid drag equation 

� = 12 WV9?-^  

Where, 

L is the lift force 

and Cl is the lift coefficient 
Equation 33 – Liquid lift equation 

The lift coefficient can be specified as a function of the body’s angle of attack 

(61)  (as given in Equation 34). This allows for the simulation of additional 

control surfaces, such as fins. 

-_ = #`9 + B` + a 

Where, 

 a,b,c are experimentally determined values 

and α is the angle of attack. 
Equation 34 – Control surface lift  

The direct modelling of the fluid lift, drag, and buoyancy forces allows these 

force calculations to be directly coupled with a standard rigid-body 

simulation. This allows liquid effects to be easily added to any physics 

simulation system. 
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2.7.2 Fluid Behaviour Modelling 

There are a number of methods for modelling fluids well documented in the 

Computational Fluid Dynamics (CFD) literature (62). There are two key 

approaches to modelling fluids. Eulerian approaches consider the changes in 

a fluid at fixed points, whereas Lagrangian approaches consider the changes 

along a trajectory (i.e. a fluid particle). These typically take the form of grid-

based approaches (which subdivides the fluid area into a discrete grid), and 

particle based approaches respectively.  

Similarly to the solid physics simulation paradigms hybrid or dual approaches 

for fluid simulation are also available(63), where both approaches are 

combined (e.g. Lagrangian particles exchange fluid information with Eulerian 

grids). Whilst there are formulations of both forms that are applicable for 

real-time evaluation, particle based approaches enable the simulation of 

arbitrary fluid motion of free surfaces in an efficient manner. Due to their 

similarities to standard particle based physics approaches discussed in 

Section 2.1, these approaches are computationally efficient and straight-

forward to integrate with rigid body and soft body systems. Conversely, grid 

based approaches can be memory intensive and thus efficient real-time grid 

based approaches tend to be two dimensional.  

Most fluid models are based on Euler’s fluid dynamics equations or 

extensions thereof. These equations are formulated from the pressure 

changes of Newton’s second equation applied to a fluid element (64). 

Assuming incompressible fluids this results in Equation 35. 
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W �>	>� + (	 ∙ ∇�	
 = −∇p 

∇ ∙ 	 = 0 

Where W is the density, 

 v is velocity, 

 p is pressure, 

and ∇ is the spatial gradient operator. 
Equation 35 – Euler’s fluid dynamics equation 

Euler’s equation ignores friction between water molecules, Navier-Stokes 

equations extend the Euler equations to consider the fluids viscosity. These 

equations form the basis of most fluid models. 

W �>	>� + (	 ∙ ∇�	
 = −∇p + μ∇9	 + Ffghfijkl 

Where μ is the kinematic viscosity 
Equation 36 – Naiver-Stokes equation 

A simplified model for the movement of fluid surfaces are dampened shallow 

water equations (64)(65). The shallow water equations assume an 

incompressible, in-viscid fluid and ignore vertical acceleration on the 

assumption of large scale motion slowly varying motion. The equations are 

formulated based on the waters height from the ground.  

>m>� + X >ℎ>� = 0, >	>� + X >ℎ>n = 0, >ℎ>� + ℎ �>m>� + >	>n
 = 0 

Where u and v are the fluid velocities in x and y directions 

 h is the height of the water surface 

and g is gravity. 
Equation 37 – Simplified shallow water equations 

A finite difference using central approximations can be used to evaluate the 

shallow water equations efficiently on a 2D grid. This results in a surface that 

simulates a body of water. To interact with rigid bodies, the fluid’s buoyancy 

force must be calculated. This can be achieved by using the discretized 

approximation and treating each location in the grid as a column of water. 
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Rigid bodies are then sampled using raycasting to determine the proportion 

occupying the underwater volume. The amplitude of the surrounding water 

can then be altered according to the forces of the body on the fluid. Figure 

17 illustrates the volume of a submersed body and floating body on the 

discretized fluid surface. 

ℎT,o(N∆( = ℎT,o( + (1 − �∆��qℎT,o( − ℎT,o(L∆(r 

 + ∆(s%s
∆'s (4ℎT,o( − ℎTNu,o( − ℎTLu,o( − ℎT,oNu( − ℎT,oLu( � 

Where � is the water damping constant  

and  c is the wave speed 
Equation 38 – Discretized two dimensional wave equation 

 

Figure 17 – Buoyancy column 

An alternative to grid based approaches are particle based approaches. The 

most common real-time implementation of 3D fluid motion is the Smoothed 

Particle Hydrodynamics (SPH) method. The SPH method evaluates field 

quantities anywhere in space based on a set of discrete particle locations. 

Each particle represents a certain volume of space and influences 

neighbouring particles through a smoothing function, or smoothing kernel 

Water surface

Rigid Body

�Water

�Occupied 

Volume



 

(see Figure 18). Substituting the Navier

of the SPH smoothing functions provides the acceleration of a particle inside 

a fluid. This allows the evaluation of the pressu

tension of a fluid, directly creating the resulting forces required to affect a 

body interacting with a liquid. 

a SPH particles location. 

Figure 18 – Smoothed Particle Hydrodynamics smoothed influence

WT = v �oo
w(�T − �o , ℎ� 

Where ρ is the particles density,

m is the particles mass,

W is the smoothing kernel,

x is the particles position,

and  h is the influence radius.
Equation 39 – SPH density equation

From the density both the pressure force and viscosity forces can be 

calculated. Buoyancy forces emerge from the system as a result of the

density of the particles. 
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). Substituting the Navier-Stokes equations into the Laplacian 

of the SPH smoothing functions provides the acceleration of a particle inside 

a fluid. This allows the evaluation of the pressure, viscosity and surface 

tension of a fluid, directly creating the resulting forces required to affect a 

body interacting with a liquid. Equation 39 calculates the density of a fluid at 

 

Smoothed Particle Hydrodynamics smoothed influence 

 

is the particles density, 

m is the particles mass, 

W is the smoothing kernel, 

the particles position, 

h is the influence radius. 
SPH density equation 

From the density both the pressure force and viscosity forces can be 

calculated. Buoyancy forces emerge from the system as a result of the

Stokes equations into the Laplacian 

of the SPH smoothing functions provides the acceleration of a particle inside 

re, viscosity and surface 

tension of a fluid, directly creating the resulting forces required to affect a 

nsity of a fluid at 

From the density both the pressure force and viscosity forces can be 

calculated. Buoyancy forces emerge from the system as a result of the rest 
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$T��&��x�& = − v �o yT − yo2Woo
∇wq�T − �o , ℎr 

Where p is the particles pressure. 
Equation 40 – SPH pressure force 

$TzT�%U�T({ = Q v �o 	T − 	oWoo
∇9wq�T − �o , ℎr 

Where µ is the viscosity coefficient 

and  v is the particles velocity 
Equation 41 – SPH viscosity force 

Finally the pressure term is calculated from Equation 42. 

y = �(W − W7� 

Where k is the gas constant 

and W7 is the rest density. 
Equation 42 – Modified ideal gas equation 

2.8 Dynamics Simulation Summary 

There are a wide variety of design choices available to dynamic simulation 

developers. Furthermore, hybrid algorithms can be implemented that inhibit 

varying advantages and disadvantages from the standard algorithms 

described above. Simulation designers need to balance the tradeoffs 

between various design choices, and can at best only implement a solution 

that provides ideal performance for a particular problem, and not as a 

general dynamic simulation framework. As a result the accuracy, robustness 

and efficiency of a complete dynamics simulation package will vary greatly. 

Each of the simulation attributes described in this chapter are valid 

interpretations of the models that represent the physical reality of the 

system. There is no clear method for determining which particular physical 

simulation model will best suit a particular robot control problem. Thus, a 

simulation developer is forced to choose one particular method and assume 
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that it will provide the best results for the system they wish to simulate. If 

the chosen simulation paradigm does not capture all of the essential 

elements of the robot and its environment, then the simulation may lead to 

invalid results. 
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3 Physics Abstraction Layer 

The software developed for this thesis can be broadly broken into five 

separate forms: 

• A component based dynamics simulation abstraction framework, for 

robustly simulating various physical aspects 

• A control library, for controlling the robot’s actions 

• An evolution library, for evolving control structures 

• A graphics library, for displaying simulation results 

• Application specific code, for accomplishing the tasks of the 

application 

The main focus of this thesis concerns the design of the dynamics simulation 

software abstraction framework. The control library, evolution library, and 

graphics library each contain a set of functions that assist the programmer in 

achieving their goal. The application specific code is of a different nature for 

each application, and this code leverages the capabilities presented by the 

other software libraries. 

In this chapter the design of the Physics Abstraction Layer (PAL) is discussed. 

It begins with an overview of some architectures for representing robotic 

mechanisms and the requirements for the design of a software abstraction 

layer. This is followed by a discussion of some common software design 

concepts. Finally, the design and implementation of the PAL software 

developed for this thesis is presented.
1
 

                                                   
1
 Note: PAL is open source software, the entire PAL software plus the COLLADA and Scythe loaders 

are available from http://pal.sourceforge.net/ 
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3.1 Previous Approaches 

An abstraction layer is a set of generalizations of models or algorithms away 

from their specific implementation details.  Supporting a number of different 

physics engines within one application requires an abstract system 

architecture for representing the contents of the virtual world and 

interacting with them.  There have been many approaches to abstract 

modelling of robotics mechanisms for multibody simulation (66)(67). An early 

approach was the Dymola system, a language for describing robot 

mechanisms and their interactions. This specification was then compiled to a 

target language. Whilst capable of representing a wide variety of 

mechanisms, the system operated on a very low level, producing the 

differential equations required to solve each component. This drawback with 

this type of framework is that it is very difficult to extend it to support 

interactions with other complex systems, such as modern collision detection 

libraries.  

Newer approaches include the Open Robot Control Software (ORCOS) project 

(67), which provides a modular framework for robot control. This is largely 

based on the “Object-Port-Connector” design pattern. Objects represent 

physical mechanical components, connectors represent kinematic and 

dynamic constraints, and ports represent the interaction points.   

Another framework is NASA’s Coupled Layered Architecture for Robotic 

Autonomy (CLARAty) unified mechanism model (67). It contains four key 

software abstractions, a body, a joint, a mechanism model and a mechanism 

interface. CLARAty Bodies represent rigid bodies and the joints represent the 

kinematic relationship between them. The CLARAty bodies can encapsulate 

the joints into one structure.  The Mechanism Model encapsulates the bodies 

and joints into a complete tree structure to represent the robot’s topology. 
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Finally, the mechanism interfaces represent the portions of the mechanism 

that can be manipulated.  

The abstract model approach taken by CLARAty provided a good starting 

point for constructing an abstract representation of a simulator-independent 

software, whereas the retargeting approach taken by Dymola enables more 

specific features to be incorporated.  NASA’s CLARAty provided support for 

multiple physics simulation approaches through a uniform abstract interface 

based on the adapter design pattern. The adapter design pattern adapts one 

interface to a class into another application’s uniform definition (68). The use 

of this pattern enables all simulations to be treated in a uniform manner, and 

this formed the basis of the design inspiration for PAL. 

During the development of the software for this thesis three projects for 

providing abstract representations for physics engines were initiated. In 2004 

the Open Physics Abstraction Layer (OPAL) (69) began development. This 

project was based on similar concepts as the Physics Abstraction Layer (PAL) 

software developed in this thesis, and inherited its name from PAL. Unlike 

PAL, OPAL only provided support for one physics engine, and acted as a 

higher level interface rather than an abstraction layer. As PAL improved the 

OPAL project was abandoned. Since OPAL inherited its name and shared 

much of its architecture from PAL it will not be discussed in detail. 

In 2005 the COLLADA consortium released v1.4 of their COLLADA file format 

specification that included physics support (70)(71). COLLADA only provides a 

file format for representing physics models, and does not provide an 

application programming interface (API) for interacting with the file format. 

Thus, any programs that are written to support COLLADA still need to 

develop specific code for each physics engine to achieve the applications 

goal. Nevertheless, the COLLADA file format influenced the design of the PAL 

6DOF constraint. 
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The GangstaWrapper (72) was released in 2005. It made heavy use of the 

adapter design pattern and shared many design decision similar to those 

taken in the design of PAL despite having independent origins. 

GangstaWrapper was only designed to support modern full featured physics 

engines and lacked the backwards compatibility design aspect of PAL. The  

GangstaWrapper did influence some of the design aspects of PAL’s support 

for modern collision detection systems. 

None of the previous physics abstraction approaches provided an extensible  

and flexible design architecture for dynamically supporting multiple physics 

engines. This can be attributed to the fact that most of the previous 

approaches did not aim to support very many independent physics engines 

(GangstaWrapper supports the most: four), making hard-coding of the 

engine support feasible. This is very different from the design goals of PAL 

which aims to support as many physics engines as possible (PAL currently 

supports 13 engines). 

As consumer level dynamic simulation engines are an emerging technology, 

the engine designs are constantly evolving. In order to keep pace with the 

ever changing simulation technology and still maintain compatibility a plug-in 

system is required (73). Plug-ins are a common software development 

technique that allow a software application to provide extended functionality 

on demand.  To enable the programmer to construct and interact with PAL 

without requiring access to a concrete implementation, the abstract factory 

pattern (68) can be combined with the plug in approach cumulating in the 

abstract pluggable factory (See Section 3.2 for an in-depth explanation). This 

pluggable factory based design delivers all of the component requirements: 

• uniform interface to multiple software libraries 

• extensible, versioned classes 

• adaptable, able to dynamically construct concrete objects  
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The use of the abstract pluggable factory enables comparative compile-

specific functionality as offered by the Dymola abstraction language. 

For the evolutionary algorithm to be able to connect and configure a large 

number of objects some form of standard communications interconnection 

between the objects is required. A motor must be controllable from a control 

algorithm whether it be a PID or Fuzzy control, and regardless of whether the 

control algorithm utilizes a PSD sensor or an inclinometer as its input. To 

achieve this level of flexible interaction a communications standard between 

the control algorithms, sensors and actuators needs to be established. This is 

achieved through a component based dataflow design (74) (See Section 

3.2.1). By developing a set of standard interconnecting components on top of 

the abstract pluggable factory a system is realized where the information 

flow can be managed and reconnected between components, without regard 

to the specific simulation environment or targeted hardware. This enables a 

more abstract version of the Port-Connector concept of the ORCOS 

framework. 

3.2 Software Concepts 

For any large-scale software system an appropriate platform is required for 

efficient development.  In order to develop software that is able to provide 

abstract access to a number of systems in an efficient manner a component-

based framework was developed. 

Software components differ from software libraries, in that libraries are a 

collection of subprograms which present useful functions for the application 

software. Frameworks however provide a set of interoperating abstract 

classes that provides a reusable design for a specific type of software (75). 

Component based software defines a basic communications system enabling 

software classes to be a single versioned deployable unit (74).  
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An abstract pluggable factory(73) provides three key features: 

1. A central repository to construct objects  

2. The ability to plug in custom objects or extend existing versioned 

objects 

3. A uniform abstract interface to the concrete implemented objects 

These features are key requirements for constructing a component-based 

framework. 

A software factory class offers a set of services for generating instances of 

various subclasses without explicitly requiring the name of the class we wish 

to construct(68).  A pluggable factory expands this concept by allowing plug-

ins to automatically extend the application’s functionality without requiring 

any modifications to the application code itself.  

To implement a pluggable factory the factory class requires a registry that 

maintains a list of all available components, and a method for creating a 

component. When a component is created, the factory can search through 

the registry for the desired class type, construct it, and return it for use. Each 

class that needs to be accessible via the factory requires a method that 

allows a copy of itself to be created, as well as a method to add its 

information to the factories registry. By creating a static copy of the class, the 

information is automatically registered at the very beginning of the 

application, before any user code is executed.  Implementation details of this 

approach for C++ are provided in Culp(76). 

The basic abstract pluggable factory design was extended in this thesis with 

novel additions allowing the construction of classes from shared objects 

(DLLs) and encapsulated the class registration information into a separate 

structure to allow versioning of objects. This registration information can 

then be employed to group objects or select the correct version of a class to 
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construct (e.g. Construct version three, not version two). A UML diagram of 

the pluggable factory pattern is depicted in Figure 19, and the pseudo code 

implementation for this approach is given in Listing 1.  

 

Listing 1 - Pseudo code for a pluggable factory 

struct  RegistrationInfo {  
/* registration information */ 

 string  className 
 int  version 
 FactoryObject *pConstructor 
} 
 
class  FactoryObject { 
 FactoryObject { /*constructor*/  
  Factory::registry.add( 

/*this classes information*/ ); 
 }  
 FactoryObject *Create() {  

/*return a new copy of this class*/ 
  return new  FactoryObject; 
 }  
 static  const  FactoryObject registerThis; 
}; 
 
class  Factory { 
 FactoryObject *CreateNewObject( string  name) { 
  FactoryObject *object = find(name, registry);  

/* find an object which uses this name in the 
registry*/ 

  return  object->Create();  
/* call the create function of the object,  
to return a new copy for our use*/ 

 } 
 static  list <RegistrationInfo> registry;  

/*the list of registered components*/ 
} 
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Figure 19 – UML diagram for a pluggable factory 

 

Figure 20 – Sequence diagram for a pluggable factory 

Figure 20 depicts a sequence diagram for the registration of objects into the 

factory and the creation of new objects from the registry. Initially a static 

version of each object is constructed. In the constructor the concrete object 

calls the factory object which in turn calls the add method of the factory. This 
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adds a copy of the concrete object’s registration information to the factory. 

When the factory creates a new object, it will find the object in the registry, 

then call the factory objects create method, which constructs a new copy of 

the concrete object. This new object is then returned back to the factory to 

complete the call. 

3.2.1 Component Based Design 

The abstract pluggable factory provides a system with abstract, extensible 

and reusable versioned classes. However, it does not provide a 

communications mechanism for interoperable components. This 

communications mechanism can be implemented on top of the abstract 

pluggable factory, by providing an abstract uniform interface to the objects 

that enable the connections between components.  

The paradigm implemented to achieve this is a data flow architecture. The 

communications interface between the objects is represented as a directed 

graph.  The open source Boost graph library(77) is employed as it provides 

efficient, generic graph classes. 

Each class that wishes to act as a part of the dataflow system defines a set of 

input and output channels.  Each channel acts to connect an output variable 

to a destination class’s inputs. (See Figure 21). Classes which process inputs 

and/or produce outputs are defined as filters. 

 

Figure 21 – Graph structure 

The factory maintains a graph with all filters and variables stored as vertices 

and the connections between them as edges.  It also provides methods for 

managing the graph: adding, removing, following, and replacing connections.  
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The filter classes themselves maintain a list with their accepted input and 

output formats.  

The factory class is also responsible for managing data flow during execution. 

The graph is traversed in a modified breadth-first search such that each filter 

operates on its input data, passes the results to a variable node, which in 

turn is read by the next filter, operated on and passed down the graph to the 

final terminating nodes to perform an action: such as issuing control 

commands, or displaying results to the screen. 

In this way, each filter can be implemented independently and connected 

together with any other filter in an ad-hoc fashion. The parameters required 

for the filter can either be manually stipulated or automatically generated 

from another filter.  Filters can also create and insert extra filters into the 

graph allowing automated reconfiguration of the system. 

Coupling the pluggable factory concept with a component based dataflow 

graph provides an extremely flexible, modular, configurable and extensible 

software platform. The runtime overhead required for this system as 

opposed to a hard-wired system is a look up in a hash table for object 

creation and a few extra pointer dereferencing operations during object 

execution. However, there are many more operations required during the 

initial set up. This additional set up time is minimal in comparison to that of 

other commercial component based architectures. 

3.3 Physics Abstraction Layer Design 

The Physics Abstraction Layer (PAL) is the software developed for this thesis 

that enables multiple physics engines to be accessed from one application. It 

provides a uniform programming interface to multiple dynamic simulation 

systems to the programmer. PAL design revolves around the abstract 
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pluggable factory pattern (73).  There are a number of design goals for the 

Physics Abstraction Layer: 

• Uniform interface: Provide a unique interface for all physics engines 

• Extendable: Allow additional features to be incorporated in a dynamic 

ad-hoc basis 

• Compatibility: Provide backwards and forwards compatibility, allowing 

interoperation and smooth progression from past to future systems 

• Comprehensive: Expose as much functionality as possible to each 

physics library 

• Conformity: Identical functionality enabled on multiple engines should 

generate similar behaviour 

• Portability: Enable the compilation of PAL programs on multiple 

operating systems 

• Scalability : Provide a single interface, that can be used equally well on 

a single core PC to a multiprocessor supercomputer to specialized 

hardware 

The PAL system has evolved over its development and has at various points 

throughout its development supported a total of 13 dynamic simulation 

systems. The physics engines supported by PAL are: 

• nVidia PhysX / AGEIA PhysX / Novodex (78) 

• Bullet Physics Library (79) 

• Dynamechs (80) 

• Havok (81) 

• Impulse Based Dynamic Simulation (82) 

• JigLib  / Jiggle Physics (83) 

• Newton Physics SDK (84) 

• Meqon (85) 
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• Open Dynamics Engine (86) 

• Open Tissue (87) 

• Simple Physics Engine (88) 

• Tokamak (89) 

• True Axis (90) 

During this time the hardware technology supporting physics simulation 

systems has also changed from only being available on standard CPU’s to 

hardware specific devices (e.g. AGEIA’s PPU) and being able to take 

advantage of the processing units on the graphics card available for general 

purpose computing (e.g. nVidia’s GPU). At the start of the PAL project there 

were only three freely available dynamics simulation systems, compared to 

the 12 available by 2006. These have been the driving factors behind the PAL 

object construction system, the pluggable factory. 

Constructing objects is only the basic parts of PAL. The software must also 

represent geometric objects, multibody constraints, sensors, actuators, and 

more. PAL provides an abstract representation for geometric objects, 

including spheres, boxes, capsules (capped cylinders), generic meshes, 

heightmaps and a plane. These geometric objects are also available for use 

with bodies, either static bodies, such as terrain, or dynamic bodies. Dynamic 

bodies can also be compound objects consisting of multiple geometries. 

PAL also provides an interface to various link constraints, including a 

prismatic, revolute and spherical link. Further to this, various actuators are 

included such as a generic force and impulse actuator as well as domain 

specific actuators such as DC motors and propellers. Some sensors are also 

available, such as contact, PSD, GPS, velocimeter, gyroscope, and contact 

sensors. 



 

Finally PAL provides an interface to the physics system itself (e

one time step), as well as a materials library for controlling frictio

restitution properties of the bodies.

3.3.1 PAL Object Construction

Figure 22 – Pluggable Factory Overview

The mechanism with which PAL objects are constructed is what enables PAL 

to have a flexible, extendable, forwards

type in PAL, there is an abstract class representation that is provided as the 

interface to the programmer.

from the abstract class, and also provides a static constructor method which 

is used to register the implementation’s existence with the PAL factory. The 

factory maintains a list of each object’s implementation, 

corresponding simulation system. When the programmer requests the 

creation of an object, the factory class detects the currently selected 

simulation system and constructs the appropriate object.

The PAL factory also maintains a version numbe

number can be used to request a specific implementation version.  In this 

way backwards compatibility can be ensured, as well as enabling the 

implementation of extra features.
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Finally PAL provides an interface to the physics system itself (e

one time step), as well as a materials library for controlling frictio

restitution properties of the bodies. 

PAL Object Construction 

 
Pluggable Factory Overview 

The mechanism with which PAL objects are constructed is what enables PAL 

to have a flexible, extendable, forwards-compatible design. 

there is an abstract class representation that is provided as the 

interface to the programmer. The concrete class implementation inherits 

from the abstract class, and also provides a static constructor method which 

is used to register the implementation’s existence with the PAL factory. The 

factory maintains a list of each object’s implementation, 

corresponding simulation system. When the programmer requests the 

creation of an object, the factory class detects the currently selected 

simulation system and constructs the appropriate object. 

The PAL factory also maintains a version number for each class. This version 

number can be used to request a specific implementation version.  In this 

way backwards compatibility can be ensured, as well as enabling the 

implementation of extra features. 

Finally PAL provides an interface to the physics system itself (e.g. simulating 

one time step), as well as a materials library for controlling friction and 

The mechanism with which PAL objects are constructed is what enables PAL 

compatible design. For each object 

there is an abstract class representation that is provided as the 

concrete class implementation inherits 

from the abstract class, and also provides a static constructor method which 

is used to register the implementation’s existence with the PAL factory. The 

factory maintains a list of each object’s implementation, as well as the 

corresponding simulation system. When the programmer requests the 

creation of an object, the factory class detects the currently selected 

r for each class. This version 

number can be used to request a specific implementation version.  In this 

way backwards compatibility can be ensured, as well as enabling the 
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For example, if we wish to create a sphere then we require a physics library 

implementation of this. The physics library implementation would inherit 

from the factory object, and provide functionality to create a copy of itself, as 

well as the registration information. This includes the version of the 

implementation, the name of the class (e.g. “sphere”), and the 

implementation group it belongs to (e.g. “Bullet”). An alternative physics 

library implementation would provide the same information, except a 

different entry for the group (e.g. “ODE”). 

When a programmer specifies the physics library they wish to use (e.g. 

“Bullet”), the factory updates its registry to only include the highest version 

entries for the given physics library. When the programmer creates a sphere, 

the PAL factory searches through its registry to find a new entry that matches 

this (e.g. “sphere”) and returns the appropriate object (e.g. a Bullet sphere). 

3.3.2 PAL Geometries and Bodies 

The physics abstraction layer requires a unique design to achieve its goals. To 

maintain maximum compatibility, redundant implementations of similar 

concepts are provided. For example, not all physics libraries provide a 

distinction between a physical body, and a simple geometry. Thus, within PAL 

there are two ways to represent a sphere. Once, as a PAL rigid body that 

contains a sphere geometry, and once as a PAL sphere (a combined rigid 

body/sphere representation). This way, if a physics engine provides 

functionality for separate geometries, then when a PAL sphere is created, it 

will default to attaching a sphere geometry to a body. If not, than the default 

implementation is not invoked and the physics engine explicitly constructs a 

spherical rigid body.  

 



 

Figure 23 – PAL Sphere representation

There are a number of distinct cases to co

rigid bodies with a given geometry. The set of geometry types supported by 

PAL is illustrated in 

Figure 24 – PAL Geometry types
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PAL Sphere representation 

There are a number of distinct cases to consider for the representation of 

rigid bodies with a given geometry. The set of geometry types supported by 

PAL is illustrated in Figure 24.  

PAL Geometry types 

nsider for the representation of 

rigid bodies with a given geometry. The set of geometry types supported by 

 



82 

 

Geometry support within a physics engine can be broadly broken down into 

the following categories: 

1. Geometry is fully supported, regardless of body type 

2. Geometry is unsupported, regardless of body type 

3. Geometry is supported, but only for static bodies 

4. Geometry is supported, but only for static or kinematic bodies 

5. Geometry is supported, but only for dynamic bodies 

6. Geometry is unsupported, however other geometries can be used to 

represent this type 

The first two cases are straight-forward to support within PAL. If the 

geometry type is completely supported, it is fully implemented in PAL’s 

geometry class structure. If it is not supported, then it is ignored and PAL will 

handle error cases. 

In the third case, the geometry is supported by the physics engine, but only 

for static (unmovable) bodies. This is a common case for many geometry 

types, such as planes, heightmaps and concave meshes. Since it is a common 

case, an alternative representation for the geometries are provided as 

“terrain” representations. The terrain can represent heightmaps, polygon 

meshes (concave geometries), and planes (orientated, or axis-aligned). These 

types are illustrated in Figure 25. A separate distinction is made between axis 

aligned planes, and planes which can have any orientation, in order to 

provide maximum support for physics engines which do not provide an 

orientated plane representation.  



 

Figure 25 – PAL Terrain types

If a physics engine can only represent a terrain geometry as a static body, 

then it is purely represented as a terrain. This helps avoid confusing the user 

with having geometry types available that cannot be assigned to bodies. 

Otherwise, the geometry representation is available, but can only be used for 

creating static bodies. If the user attempts

body then PAL will return an error.

The fourth case (geometry supported by static and kinematic bodies) is 

handled in a similar manner. The geometry has an implemented 

representation within PAL, but returns an error when 

with a dynamic body. The fifth case is the reciprocal of the fourth, where the 

geometry will only support dynamic bodies, yet will not support static bodies. 

In the sixth case the geometry is unsupported directly by the physics engine

however, it can be represented using alternative means. This broadly falls 

into two common categories, depicted in 

geometry type is not supported is a subset of a geometry type that is 

supported. An examp

objects, but does not support the representation of a capsule. To handle this 

PAL employs the template design pattern. PAL provides an abstract set of 
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PAL Terrain types 

If a physics engine can only represent a terrain geometry as a static body, 

represented as a terrain. This helps avoid confusing the user 

with having geometry types available that cannot be assigned to bodies. 

Otherwise, the geometry representation is available, but can only be used for 

creating static bodies. If the user attempts to assign a geometry to a dynamic 

body then PAL will return an error. 

The fourth case (geometry supported by static and kinematic bodies) is 

handled in a similar manner. The geometry has an implemented 

representation within PAL, but returns an error when the geometry is used 

with a dynamic body. The fifth case is the reciprocal of the fourth, where the 

geometry will only support dynamic bodies, yet will not support static bodies. 

In the sixth case the geometry is unsupported directly by the physics engine

however, it can be represented using alternative means. This broadly falls 

into two common categories, depicted in Figure 26. First, where the 

geometry type is not supported is a subset of a geometry type that is 

supported. An example of this is a physics engine that supports convex 

objects, but does not support the representation of a capsule. To handle this 

PAL employs the template design pattern. PAL provides an abstract set of 

 

If a physics engine can only represent a terrain geometry as a static body, 

represented as a terrain. This helps avoid confusing the user 

with having geometry types available that cannot be assigned to bodies. 

Otherwise, the geometry representation is available, but can only be used for 

to assign a geometry to a dynamic 

The fourth case (geometry supported by static and kinematic bodies) is 

handled in a similar manner. The geometry has an implemented 

the geometry is used 

with a dynamic body. The fifth case is the reciprocal of the fourth, where the 

geometry will only support dynamic bodies, yet will not support static bodies.  

In the sixth case the geometry is unsupported directly by the physics engine, 

however, it can be represented using alternative means. This broadly falls 

. First, where the 

geometry type is not supported is a subset of a geometry type that is 

le of this is a physics engine that supports convex 

objects, but does not support the representation of a capsule. To handle this 

PAL employs the template design pattern. PAL provides an abstract set of 



 

methods for creating a geometry representation as a s

enabling the physics engine to construct the simpler geometry using the 

convex geometry type.  

Figure 26 – Alternative geometry representations. Left 

Geometry composition 

The other category is geometries that are not subsets of a supported 

geometry, but can be estimated from the composition of an alternative. An 

example of this is if a physics engine does not provide a plane representation, 

but provides support for a static box inste

aggregation and special case code. This may not result in the geometry being 

supported universally by the physics engine, rather just as a hard

terrain representation. 

Since very few physics engines support dynamic bodies wit

geometry, an alternative rigid body type is provided that can contain multiple 

simpler geometries. This enables complex geometry to be reconstructed 

from compound simple geometries. Most physics engines support a 

compound body type, however, few 

adding or removing geometries to a body once they are created. This poses a 

problem since some physics engines require the creation of a body and then 

attaching geometries to it, whereas others require the geometries to 

defined when the body is created.
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methods for creating a geometry representation as a set of triangles, 

enabling the physics engine to construct the simpler geometry using the 

 

 

Alternative geometry representations. Left – Geometry subsets, Right 

category is geometries that are not subsets of a supported 

geometry, but can be estimated from the composition of an alternative. An 

example of this is if a physics engine does not provide a plane representation, 

but provides support for a static box instead. This is handled with 

aggregation and special case code. This may not result in the geometry being 

supported universally by the physics engine, rather just as a hard

Since very few physics engines support dynamic bodies with concave 

geometry, an alternative rigid body type is provided that can contain multiple 

simpler geometries. This enables complex geometry to be reconstructed 

from compound simple geometries. Most physics engines support a 

compound body type, however, few physics engines support dynamically 

adding or removing geometries to a body once they are created. This poses a 

problem since some physics engines require the creation of a body and then 

attaching geometries to it, whereas others require the geometries to 

defined when the body is created. 

et of triangles, 

enabling the physics engine to construct the simpler geometry using the 

Geometry subsets, Right – 

category is geometries that are not subsets of a supported 

geometry, but can be estimated from the composition of an alternative. An 

example of this is if a physics engine does not provide a plane representation, 

ad. This is handled with 

aggregation and special case code. This may not result in the geometry being 

supported universally by the physics engine, rather just as a hard-coded 

h concave 

geometry, an alternative rigid body type is provided that can contain multiple 

simpler geometries. This enables complex geometry to be reconstructed 

from compound simple geometries. Most physics engines support a 

physics engines support dynamically 

adding or removing geometries to a body once they are created. This poses a 

problem since some physics engines require the creation of a body and then 

attaching geometries to it, whereas others require the geometries to be 
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This is achieved by using lazy evaluation. Each geometry is added to the body 

is stored in a buffer and once the body is finalized all the geometries can be 

processed within one call, regardless of how the underlying physics engine 

requires the compound body to be constructed. 

There are a number of additional separate rigid body types that may be 

supported by a physics engine.  

• Static bodies – Bodies that are not moveable, such as terrain. These 

exist purely for collision detection. 

• Kinematic bodies – Bodies that can be moved, but do not respond to 

forces or collisions. These allow objects to move in predefined 

motions and interact with the dynamic objects in the scene. 

• Dynamic bodies – Bodies that respond to forces and collisions. The 

movement of these bodies is calculated from the forces applied to the 

body. 

• Compound bodies – Bodies that contain multiple geometries. 

PAL provides one additional body type: 

• Generic body – This is a body that can be switched between all 

representations and can have geometries dynamically added and 

removed. 

Physics engines do not implement the various body types according to these 

strict definitions. The physics engines that do conform to this are directly 

implemented in PAL. Physics engines that do not support a certain body type 

do not have that body type implemented. There is no attempt to emulate 

higher level functionality with the use of other bodies.  



 

Figure 27 – PAL Body types 

Emulating additional functiona

example, if a static or kinematic body is emulated with a dynamic body then 

all forces acting on the body would have to be negated. That is, if gravity is 

being applied to a body, a force would have to be appli

magnitude in the opposite direction in which gravity is acting. Over time 

numerical differences between the set position of the body and the position 

attempting to be maintained start diverging and the body will begin to drift. 

 Some physics engines provide partial implementations of a body type. 

Physics engines will often provide the ability to reposition static bodies, 

enabling some of the functionality of a kinematic body to be achieved. 

However, this movement does not influence any bodie

between the static bodies starting position and ending position. As a result 
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3.3.3 PAL Constraints 

There are four constraint types supported by PAL: 

• Spherical links (3 DOF rotational freedom) 

• Revolute links (1 DOF rotational freedom 

• Prismatic links (1 DOF translational freedom) 

• Generic links (configurable 6 DOF) 

Most physics engines support the spherical, revolute and prismatic links 

directly. A few do not support some forms of links directly, but instead 

provide a link constraint that can be used to emulate the missing constraint 

type. For example, a revolute link may be constructed from a spherical link 

with additional constraint limits. Although a generic constraint can be used, it 

is generally avoided as a number of numerical integration issues occur when 

generic constraints are employed. 

3.4 Geometry Representations 

To create the dynamic objects, the geometry is typically limited to simple 

shapes such as boxes, spheres and capsules (See Figure 28).   

The geometry shapes supported by the physics engines underlying collision 

system are not explicitly modelled in PAL.  PAL does provide a polygonized 

representation of the geometries in order to support physics engines that 

only support convex dynamic bodies. 

 



 

Figure 28 – PAL Dynamic Body Geometries 

left – sphere, Bottom right – compound body

Boxes are represented as a set of 8 faces, whereas the sphere and cylinder 

are generated from a specified numb

� = cos(�� cos(�� 
n = cos(�� sin(�� 
� = sin (�� 

Equation 43 – Sphere generation

3.4.1 Terrain Representations

 To construct realistic environments for a simulator, a number of elements 

are required, including methods for representing the geometry of the 

environment, such as the terrain, and the properties of the environment, 

such as liquids. 
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PAL Dynamic Body Geometries – Top left – box, Top right – capsule, Bottom 

compound body 

Boxes are represented as a set of 8 faces, whereas the sphere and cylinder 

are generated from a specified number of divisions as in Equation 43

Sphere generation 

Terrain Representations 

To construct realistic environments for a simulator, a number of elements 

are required, including methods for representing the geometry of the 

environment, such as the terrain, and the properties of the environment, 

capsule, Bottom 

Boxes are represented as a set of 8 faces, whereas the sphere and cylinder 

43. 

To construct realistic environments for a simulator, a number of elements 

are required, including methods for representing the geometry of the 

environment, such as the terrain, and the properties of the environment, 
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All robotic systems, with the exception of space robots, have some form of 

immobile environment with which they interact. Depending on the 

configuration a number of different environment terrain models are 

applicable. For example, when simulating a robot in a laboratory it may be 

appropriate to approximate the environment as a simple plane. Alternatively, 

the simulation of an automobile would require a more detailed 

representation of the environment, such as a height map. 

A plane is the simplest type of environment a robotic system can be found in. 

It represents a perfectly flat surface. The equation of a plane is given by: 

#� + Bn + a� + � = 0 

Equation 44 – Equation of a plane 

Where (a,b,c) is the normal of the plane. To determine the equation of a 

plane given a normal vector and a point the parameter d can be calculated 

from: 

� =  −51�. � 

Where 51� is the plane normal 

 p is a point on the plane 
Equation 45 – Plane Equation 

Any larger representations of a more complex terrain can be locally 

represented as a plane. In order to achieve this representation three points 

(i.e. vertices) are required on the complex terrain to construct a plane 

representation.  All that is required is to calculate the plane’s normal, as the 

rest can be calculated from Equation 45. 

51� = (y9 − yu� × (y� − yu� 

Where 51� is the plane normal 

and  p1,p2,p3 are three points from the complex terrain. 
Equation 46 – Normal from three points 
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The plane model is required in PAL such that PAL can convert between 

different representations (e.g. point and normal form) and construct the 

appropriate position matrix for representing a plane with a box. 

To create a representation of the plane with a box, the orientation, position, 

and dimensions of the box are required. The size of the box can be 

determined from the size of the simulated world. 

The position of the box on an infinite plane is arbitrary – it can be anywhere 

on the plane. The best choice is typically the closest point on the plane to 

the origin of the world as this will allow the size of the box to match the 

world size (which is typically constrained within a virtual box). The closest 

point on the plane to the origin can be determined from the Euclidian 

distance to the origin constrained on the plane. This is given in Equation 47. 

�, n, � =  #�#9 + B9 + a9 , B�#9 + B9 + a9 , a�#9 + B9 + a9 

Equation 47 – Point on plane closest to origin 

A rotation matrix for an object is constructed from three basis vectors. These 

three vectors are orthogonal from one another. Given the normal of a plane, 

the two other basis vectors required can be generated by providing initial 

estimates for the basis vectors and enforcing they are orthonormal. The 

process for this is: 

• Estimate basis vectors as [0,0,1] [0,1,0], [1,0,0]. 

• Perform a dot-product with the estimated basis vectors and the plane 

normal 

• Select the lowest dot-product as the best-estimate tangent to the 

normal. (The dot product between two perpendicular vectors is zero) 

• Create the vector perpendicular to both the estimated tangent and 

the normal via the cross product. (i.e. bi-tangent) 
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• Create true orthogonal vectors with the true normal and estimated 

tangent and bi-tangent via orthogonalization (e.g. Gram–Schmidt 

process) 

Given the rotation matrix, position and dimensions required the plane can 

then be reconstructed and modelled with a large box instead. 

Heightmaps are a 2-D domain, containing a displacement at each point from 

the origin of a surface (See Figure 29).  This representation is advantageous 

as it is compact and is commonly used in geographic information systems 

allowing for digital elevation models to be used within a simulator. 

 

Figure 29 - Heightmap 

PAL requires an internal model of the heightmap terrain, as some physics 

engines do not support this type. Nevertheless, it can be implemented if a 

more general polygon soup mesh is available. Heightmaps are triangulated 

by  processing four adjacent data points at a time, first constructing a triangle 

from the top left set, then the bottom right set. (See Figure 30) 



 

Figure 30 – Left - Triangulated height data, Right 

The most versatile representation is a generalized polygon mesh 

representation. It allows concave object representations and is extremely 

useful for modelling the terrain. This allows for the simulation of indoor 

environments, as well as more complex outdoors scenes. Height

subset of a terrain mesh, allowing a terrain mesh to augment a scene 

described by a geographic information system

format is natively supported by the physics engine’s collision detection 

system, and so there is no m

itself. 

3.5 Fluid Model Representations

The core difference between traditional rigid body physics and underwater 

physics are the fluid effects. These are mostly the drag and lift effects, and 

the buoyancy forces. These can either be modelled and applied directly to 

the bodies, or the behaviour of the liquid itself can be modelled and then 

applied to the bodies. 

Directly modelling the liquid forces that are applied to the bodies has the 

advantage of being less comp

techniques. Many of the forces can be experimentally verified, providing a 

good model of global effects on a body. The interaction of liquid between 
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Triangulated height data, Right – Two step triangulation 

representation is a generalized polygon mesh 

representation. It allows concave object representations and is extremely 
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subset of a terrain mesh, allowing a terrain mesh to augment a scene 

geographic information system digital elevation model. This 

format is natively supported by the physics engine’s collision detection 

system, and so there is no model for a generalized polygon soup within PAL 
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multiple bodies is far more difficult to model using direct techniques, and so 

it is less appropriate for modelling nearby submersed bodies (e.g. two ships 

close to each other). 

Very few physics engines provide support for fluids. Therefore the fluids are 

typically modelled explicitly and directly implemented in PAL itself. The 

theory behind these models is described in Chapter 2. 

The direct fluid effects are calculated using the buoyancy and drag forces 

described in Equation 30 and Equation 32. These are then directly applied to 

the body being simulated. The buoyancy volume is approximated with a set 

of spheres as described in Chapter 2. 

�M = (VW�X 

Where, 

V is the volume of displaced fluid 

Fb is the buoyancy force 

 W is the density of the liquid 

and g is the gravity force. 
Equation 48 - Archimedes' principle 

\ = 12 WV9?-� 

Where, 

 D is the drag force 

 A is the frontal area 

 Cd is the drag coefficient 

and  V is the relative velocity 
Equation 49 – Liquid drag equation 

For the Eulerian fluid modelled with the Shallow Wave Equations, a set grid 

area is defined as a fluid, and raycasts are performed from a given water 

depth to the set surface height (see Figure 31). If there is an object 

obstructing the ray, the respective volumes above and below the surface of 

the fluid are calculated and the buoyancy forces are applied to the body at 

that point (refer to Chapter 2). The physics engine is responsible for summing 
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the total forces and torques that apply to the body.  The shallow wave 

system is then perturbed at the points where the body interacts with the 

water surface, and the shallow wave equations are executed for another 

timestep in order to update the current water surface. 

 

Figure 31 – Eulerian fluid simulation with raycasting 

The SPH fluid simulation is performed in accelerated hardware for some 

physics engines. The PAL SPH implementation employs the SPH model 

described in Chapter 2 and follows a five step process: 

1. All the density and acceleration data is cleared for each particle 

2. The density and pressures are calculated and summed for each 

particle from the influences of neighboring particles 

3. The resulting forces and subsequent accelerations are calculated from 

each particles viscosity information from the influences of neighboring 

particles 

4. Collision detection is performed and an elastic collision response is 

performed instantaneously altering the particles velocities 

5. The updated particle positions are calculated from the particles 

acceleration and velocity 
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This process is repeated every timestep to update the fluid state. The 

smoothing kernels used are given in Equation 50, Equation 51, and Equation 

52. 

31564Yℎ� (ℎ9 − [9�� 

Equation 50 – The SPH density smoothing kernel (poly6) 

− 45Yℎ� (ℎ − [�9 

Equation 51 – The SPH pressure smoothing kernel (spiky) 

45Yℎ� (ℎ − [� 

Equation 52 – The SPH viscosity smoothing kernel  

3.6  Actuator Models 

Accurate modelling of actuator behaviour is critical for simulating realistic 

motions.   To simulate an actuator a number of models are required to 

produce the final desired behaviour. 

3.6.1 Generic Angular Velocity Motor Model 

A simple angular velocity motor can be simulated by applying impulses to 

two bodies connected by a revolute joint. The current axis of the joint can be 

calculated using the transformation matrix of the parent body: 

a#�3�11111111111� = " #�3�11111111� 
3�ym���11111111111111111� = a#�3�11111111111� ∗ ��[�5X�ℎ 

Where,  M is the  parents rotation matrix 

 #�3�11111111� is the original joint axis  

 a#�3�11111111111�   is the current joint axis 

strength is the scalar strength of the impulse being applied 

and   3�ym���11111111111111111�  is the impulse applied to the parent body 
Equation 53 – Impulse model for a angular velocity motor 
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The impulse is then applied to the parent body and a negative impulse is 

applied to the child body. 

3.6.2 Generic Angular Position Motor Model 

To simulate a generic angular position motor model a standard Proportional-

Integral-Derivative (PID) controller is coupled to the angular velocity motor 

model (See Section 5.1.1 on PID control).  The input error to the PID 

controller is the difference between the joints current angle and the desired 

angle (wrapped between 0 and 2π), and the time since the last update (i.e.: 

the integrator step size).   The output value from the PID controller is then 

applied to the underlying angular velocity motor model. 

3.6.3 DC Motor Model 

The DC motor torque can be mathematically modelled using the standard 

armature controlled DC motor model (91), represented by: 

�K(�� = �+ VK(�� − �M�=(��K  

Where, Ra is the Armature resistance (ohms) 

  KT is the motor torque constant (Nm/A) 

  Kb is the motor back EMF constant (Vs/rad) 

  ωn is the angular velocity of motor (rad/s) 

and  Va is the applied armature voltage (Volts) 
Equation 54 - Armature Controlled DC Motor Torque Equation (91) 

The armature model can also be described as a transfer function for the 

motor in terms of an input voltage (V) and output rotational speed (θ): 

�V = �(*� + B�(�� + � + �9 

Where, J is the moment of inertia of the rotor, 

b is the damping ratio of the mechanical system, 

L is the rotor electrical inductance, 

R is the terminal electrical resistance, 

and   K is the electro motive force constant. 
Equation 55 - Armature controlled DC motor model transfer function (91) 
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3.6.4 Servo Model 

A servomotor comprises of essentially two components, a control system, 

and a DC motor. The motor component can be modelled as described above. 

The control system for a servo is generally a Proportional-Integral-Derivative 

(PID) controller. The controller can be mathematically simplified by ignoring 

the integral and derivative terms since the proportional term dominates its 

behaviour. Incorporating the DC motor model into the servo P-controller and 

using �� = �Ux(�x( − �T=�x( for the error signal gives Equation 56. 

�� = ��+K (�K����(�� − �M�=(��� 

Where, Ka is the power amplifier gain 

  Kε is the proportional gain for error signal 

and  θε is the angular error signal (= θoutput – θinput) 
Equation 56 - Torque Equation for Servo Control System (92) 

3.6.5 The Hi-Tec 945 MG Servo Model 

The Hi-Tec servo can be modelled by applying the servo model described 

above. The Hi-Tec servo specifications are listed in Table 2. 

Parameter Specification 

Operating Voltage 4.8V 

Stall Torque 11kg.cm 

Deadband Width 4 µsec 

Operating Speed 0.16 sec / 60° No load 

Operating Angle 45° / 400 µsec 
Table 2 - Hi-Tec 945 MG servo specifications 

Considering the case where the armature is stationary (ωn = 0) and the 

maximum supply voltage is applied to the armature (Va = 4.8V), allows us to 

determine: 

��+� = ��,�(K^^VK,�K' = 0.180 ��/V 

Equation 57 - Stall Torque Test 
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When the motor is at top speed, the applied armature voltage equals the 

back EMF, i.e. VK(�� = �&�=,�K'(��. From the servo specifications the 

maximum angular velocity is known, so the motor back EMF constant can be 

calculated:  

�& = VK,�K'�=,�K' = 0.733 V�/[#� 

Equation 58 - Maximum Speed Test 

This gives: 

�� = 0.180(VK(�� − 0.733�=(��� 

Equation 59 - Servo Torque Equation 

The proportional component of the controller was modelled with Equation 

60. The model assumes that the maximum supply voltage is applied to the 

motor, until its gets within a tolerance of the desired angle. The voltage 

applied to the motor is then linearly decreased, until the servo reaches its 

final destination.  

VK = �����(��,   ����(�� < VK,�K'VK,�K', ��ℎ�[�4�� � 
Equation 60 - Armature Voltage P-Controller Model 

This model performed adequately for large movements, however it was 

found that for small angle movements, where the maximum armature 

voltage was not achieved, the servo model was not accurate since the full 

stall torque is not applied. To overcome this, it is assumed that the maximum 

supply voltage is always applied to the armature. This is a reasonable 

assumption, since the slowing down of the servo has only a minor effect on 

its time response. 

The deadband specification of the servo was used to decide when the servo 

model had reached its target angle. Once the servo is deemed to have 
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reached its destination, a torque is no longer applied to the joint. This is 

shown in Equation 61. 

� = �0, ��%x��&=( − �(K� &(� < ��&K�MK=�2��, ��ℎ�[�4�� � 
Equation 61 - Servo Deadband Model 

3.6.6 Thruster Model 

The default thruster model implemented is based on the lumped parameter 

dynamic thruster model developed by D. R. Yoerger et al. (59). The thrust 

produced is governed by: 

�ℎ[m�� =  -(Ω|Ω|  
Where Ω is the propeller angular velocity, 

and   Ct is the proportionality constant. 

Equation 62 – Lumped parameter dynamic thruster model 

3.6.7 Control Surfaces 

Control surfaces are movable surfaces that affect the movement of a body in 

a fluid. Control surfaces are typically found on aircraft (e.g. ailerons), ships 

(e.g. rudders) and underwater vehicles (e.g. fins). The model used to 

determine the lift from diametrically opposite fins (61) is given by: 

�ST= = 12 W-_¢S£ST=¤&	&9 

Where,Lfin is the lift force, 

 ρ is the density, 

 CLδf is the rate of change of lift coefficient with respect to fin effective 

angle of attack, 

 Sfin is the fin platform area, 

 δe is the effective fin angle, 	&is the effective fin velocity 
Equation 63 – Fin control surface lift model 
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3.7 Sensor Models 

The Physics Abstraction Layer can simulate a number of sensors. Each sensor 

can be coupled with an error model to allow the simulation of sensor data 

similar to the accuracy of the physical equipment that is being simulated. 

Many of the positional and orientation sensors can be directly modelled from 

the data available from the lower level physics library.  Every sensor is 

attached to a body that represents a physical component of a robot. 

3.7.1 Inclinometer 

The simulated inclinometer sensor calculates its orientation from the 

orientation of the body that it is attached to, relative to the inclinometer’s 

own initial orientation. Given a normalized vector indicating the forward axis 

of the inclinometer, fwd and the body’s current 3x3 rotation matrix M we can 

calculate the new rotated forward axis vector rfwd: 

[$��11111111111� = " $��11111111� 

Equation 64 – Axis transformation 

The angle between these two vectors can be calculated as: 

θ = cosLu�[$��11111111111�. $��11111111��   
Equation 65 – Angle between two vectors 

This provides only a positive angle, and does not indicate a difference 

between the vector being “in front of” or “behind” the vector. This can be 

calculated by creating a virtual “right” vector, indicating a vector 

perpendicular to the front vector. This vector can be generated from the 

forward axis and a 3x3 rotation matrix R, representing a 90 degree rotation. 

[3Xℎ�11111111111� = $��11111111� 

Equation 66 – Right vector transformation 
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Then following a similar procedure to find the angle between the right axis 

and the forward axis: 

[[3Xℎ�1111111111111� = " [3Xℎ�11111111111� 

��� = [[3Xℎ�1111111111111� . $��11111111� 

Equation 67 – Angle sign calculation 

If the dot product is less than zero, the angle becomes negative. 

3.7.2 Gyroscope 

Similarly to the inclinometer, the simulated gyroscope calculates its 

orientation from the attached body’s angular velocity, and its own axis of 

rotation. In the case of the engine being able to directly provide the bodies 

angular velocity, the calculation simply becomes a dot product between the 

angular velocity (ω) and the gyroscopes axis: 

� = #�3�11111111�. �11� 

Equation 68 – Gyroscope angle calculation 

3.7.3 Velocimeter 

The velocimeter calculates the velocity in a given direction from its 

orientation axis and the velocity information from the attached body. Again, 

given the physics engines ability to directly provide a body’s linear velocity, 

the calculation is a dot product between the linear velocity (v) and the 

velocimeters axis: 

� = #�3�11111111�. 	� 
Equation 69 – Scalar velocity calculation 

3.7.4 PSD Sensor 

Distance measuring sensors, such as echo-sounders and Positional Sensitive 

Devices (PSDs) are simulated by traditional ray casting techniques, provided 

the low level physics library supports the necessary data structures and ray 
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casting routines. The implementation of the PSD sensor depends highly on 

the ray casting functionality provided by the physics engine (if it is provided 

at all). Otherwise the ray cast routine is dependent on the spatial partitioning 

data structures employed by the low-level physics library. If the physics 

library directly provides a routine for raycasting given an axis and a starting 

point, then this information can be directly pass to it by PAL. If the engine 

requires the start and end points for the ray, then this can be calculated 

from: 

¦§¨©§ = "ª 

Where, start is the ray start point 

  M is the body’s rotation matrix 

and    o is the original start points offset relative to the body’s position 
Equation 70 – Point transformation 

The end point can then be calculated by finding the direction of the axis 

©¨ = "#� 
5#1111� = «©¨ − �« 
¬® = ¦§¨©§ + 5#1111� ∗ [#5X� 

Where, end is the ray end point 

  start is the ray start point 

   M is the body’s rotation matrix 

  #� is the axis indicating the direction of the PSD 

  ra is the rotated axis position 

  p is the position of the body 

and   range is the distance the PSD can sense. 
Equation 71 – Ray end point calculation 

3.7.5 GPS 

A rudimentary GPS sensor can be simulated given certain assumptions, such 

as that the simulation takes place within a narrow range of the earth’s 

latitude. The GPS position can be calculated from Equation 72. 
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�#� = y. ��y� ∗ 3600 

��5X = y. ��y� ∗ 3600 
�#�"45 = $[#a([2�(�#�� ∗ 60� 

��5X"45 = $[#a([2�(��5X� ∗ 60� 

Where , p is the bodies position 

  Mps is the meters per arc second of the earth at the current 

earths latitude 

  lat is the latitude in arc seconds 

  long is the longitude in arc seconds 

  latMin is the latitude in arc minutes 

and  longMin is the longitude in arc minutes 
Equation 72 – GPS latitude and longitude calculation  

The checksum can be calculated as follows: 

int  i=0; 
 int  checksum=0; 
 while  (buffer[i]!= '*' ) { 
  checksum^=buffer[i]; 
  i++; 
 } 

Listing 2 – GPS Checksum calculation 

3.7.6 Contact Sensor 

Contact sensors are simulated by querying the collision detection routines of 

the low-level physics library for the positions where collisions occurred. If the 

collisions queried occur within the domain of the contact sensors, then these 

collisions are recorded. The mechanics involved with detecting, storing and 

sorting the relevant collision information are highly dependent on each 

physics library’s implementation. Typically this involves inspecting the physics 

engine’s collision subsystem and creating a callback function to store and 

sort all the contact information. Contact generation is an extremely complex 

task that has a large influence on the stability and robustness of the physics 

engine.  
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4 Physics Engine Evaluation 

In the past it has been very difficult to compare physics engines, however 

recently a number of physics engine abstraction systems have become 

available such as PAL (Physics Abstraction Layer) (93), which was developed 

for this thesis, OPAL (Open Physics Abstraction Layer) (69), and 

GangstaWrapper (72).  These abstraction layers allow developers to 

implement one version of their physics system through a unique interface 

and test their application with multiple engines before constructing a final 

release. Additionally, they simplify the task of comparing physics engines 

directly. 

The Open Physics Abstraction Layer is the least complete, providing only an 

interface to one physics engine. The GangstaWrapper provides an interface 

to four physics engines, whereas PAL provides support for more than ten 

engines.  GangstaWrapper is no longer maintained, however provides a solid 

interface for the physics engines it supports.  

An alternative approach to achieving physics engine interoperability is the 

COLLADA (70) standard. Coumans and Victor (71) provide a brief overview 

article of the COLLADA physics standard and provide a short comparison of 

the capabilities of the Bullet (79), Novodex (Ageia/nVidia PhysX) (78) , ODE 

(Open Dynamics Engine) (86) and Havok (81) physics engines. 

Seugling and Rolin (94) published an article comparing three different physics 

engines, Newton (84), Novodex (Ageia/nVidia PhysX), and ODE (Open 

Dynamics Engine). Their evaluation focused primarily on the performance of 

the systems for simulators. In this Chapter similar tests will be conducted and 

analysed with an additional focus on real-time capable technology. From 

their test results they concluded that Novodex (Ageia PhysX) provided the 

best results. Although most of the tests provided a quantitative difference in 
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performance, the final evaluation was determined from a very rough grading 

system. As a result the final findings did not necessarily reflect significant 

performance differences in the individual tests between physics engines. 

Most physics engines have a particular target application to which they are 

optimized. This results in different performance in each and extra features 

are often made available specifically for a target application. PAL supports 

more than ten different physics engines, of which seven are tested in this 

comparison. The engines supported by PAL are nVidia/AGEIA PhysX(78) (also 

referred to as Novodex), Bullet Physics Library (79), Dynamechs (80), Havok 

(81), IBDS (82), JigLib (83), Meqon (85), Newton Physics SDK (84), Open 

Dynamics Engine (86), OpenTissue Library (87),  Tokamak (89), True Axis 

Physics SDK (90). 

There are five engines supported by PAL that are not tested. Dynamechs is 

not tested, as it does not support collisions between two dynamic bodies. It 

only supports collisions between dynamic and static bodies. Meqon is not 

tested, as it is no longer distributed, and the OpenTissue Library was not 

included since it is not a complete physics engine, rather a meta-library and 

thus it is difficult to construct a fair and general test configuration. Havok and 

IBDS were not examined as PAL does not have a complete implementation of 

the physics engines’ capabilities. 

4.1 Physics Engine Evaluation Tests 

Five tests were performed to assess the aspects of the physics engines. These 

are integrator, material, constraint, collision and stacking tests.
 2

 

                                                   
2
 Note: A video of these tests is available from the Eurographics 2007 physics stream 

http://isg.cs.tcd.ie/eg07/, or on youtube: http://www.youtube.com/watch?v=IhOKGBd-7iw 

 

The source code for these tests is available from the CVS repository of the PAL project at 

http://pal.sourceforge.net/ 
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4.1.1 Integrator Performance 

 

Figure 32 – Integrator test configuration 

The integrator is responsible for calculating a body’s position given the forces 

acting on it.  The performance of the integrator affects the accuracy of the 

simulation.  To test the integrator a very simple test is performed. A sphere is 

constructed at the origin and allowed to drop from gravitational forces. 

Gravity is set to -9.8m/s, and the time step is set to 0.01s. The positions 

presented by the physics engines are then recorded and compared to ideal 

cases for various integrators. From classical physics, the position of a body 

with no initial velocity can be calculated from: 

[ = 12 #�9 

Where [ is the body’s displacement 

 # is the body’s acceleration 

and  � is time. 
Equation 73 – Uniform acceleration 
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Figure 33 – Positional error from cumulative numerical integrators relative to the ideal 

case normalized to the Symplectic Euler integrator error 

Figure 33 illustrates the accumulated position errors due to the integrator 

relative to the ideal case presented above. The errors have been normalized 

with respect to the Symplectic Euler integrator. Most physics engines provide 

results similar to the Symplectic Euler integrator, or 2
nd

 order Euler. Novodex 

(Ageia PhysX) provided the best results.   The integrator for the Newton 

physics engine provided the worst results, with over 40 times the relative 

error of the Symplectic Euler integrator. For this reason it is not illustrated in 

Figure 33. The Newton engine results were close to what would be expected, 

if the physics system was simulating air drag of an extremely smooth object 

(e.g. an aircraft wing (95))  However, this effect is due to forced velocity 

dampening by the Newton integrator. 
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4.1.2 Material Properties 

 

Figure 34 – Restitution test configuration 

Materials are responsible for simulating friction and restitution properties 

during a collision.  Accurate friction and restitution models are critical for 

simulation systems involving the interaction between two bodies (e.g. 

walking robots). 

The materials restitution properties were tested by colliding a box with a 

sphere. The box is placed on the ground and the sphere is placed one meter 

above. The box was of dimensions 1×1×1m
3
, and a mass of 1kg, the sphere 

had a radius of 0.5m, and a mass of 1kg. Three different values of restitution 

were tested, 0.1, 0.5 and 0.9. Since the box on the ground is stationary the 

relationship between the dropped height and the coefficient of restitution is 

given in classical physics by Equation 74. 
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-¯ = °ℎ± 

Where -¯ is the coefficient of restitution 

  h is the bounce height 

and ± is the drop height. 
Equation 74 – Coefficient of restitution 

A graph of the bouncing boxes positioned over time for a restitution 

coefficient of 0.5 is depicted in Figure 35.   The maximum heights obtained 

for the three different restitution values are given in Figure 36. 

 

Figure 35 - Bounce height for a coefficient of restitution of 0.5 

For course applications an accurate restitution model is unnecessary, more 

important is that there is a correlation between an increase in restitution 

value and the bounce height. Bullet and True Axis give acceptable relative 

increases in the bounce height, and to a lesser extent Novodex, Newton and 

Tokamak showed a correlation. 

The level (e.g. position, velocity) at which a constraint based simulation 

attempts to satisfy its constraints may cause drift due to numerical 
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inaccuracies or poor convergence. Physics engines can attempt to correct 

these effects, for example with Baumgarte stabilization, however, this may 

result in producing instabilities(42). The implementation choices of each 

engine results in the different performance seen in Figure 36. 

 

Figure 36 – Maximum bounce height for varying values of restitution. 
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Figure 37 - Friction test configuration 

To test the static friction, a 5×1×5m box was placed on an inclined plane. A 

static friction coefficient was assigned to the materials of the box and the 

plane, and the angle of the plane was then incrementally increased to test 

the angle at which the box would first start sliding. This process was repeated 

for the range of static coefficients from 0.1 to 0.7, increasing by 0.1. The 

angle of the plane was tested in the range of 0 to 0.7 in increments of 0.05 

radians.  

The Jiglib physics engine was not included in this test, as the PAL 

implementation does not support resetting a body’s orientation after 

construction.  

The Newton physics engine provides the closest approximation of the ideal 

results, with ODE providing the second best. Novodex also provides a good 

approximation, however it applies too much static friction effect. All engines 

display an increase in the angle required before motion occurs, indicating 
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they all provide suitable models for course simulations. For higher fidelity 

simulation systems only Newton and ODE provide an acceptably accurate 

model. 

 

Figure 38 – Angle of the plane at which the body began movement versus the static 

friction coefficient 

4.1.3 Constraint Stability 

Constraint stability is one of the areas of importance for game designers. If 

constraints are unstable numerical errors can cause constrained bodies to 

slowly drift apart. This results in unrealistic looking results. This is of critical 

importance for simulation engineers simulating multibody robotic systems. 
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Figure 39 – Constraint test configuration 

To test the constraints’ stability, a chain of spherical links connecting a 

number of spheres was simulated.  The chain was attached to two boxes as 

indicated in Figure 39. Each sphere in the chain had a radius of 0.2m, and a 

mass of 0.1kg. The mass of the boxes was 400 times the number of 

constraints. 

The two side boxes were as high as the number of constraints, and the 

supporting base measured 1x1m². The test was run for 20 seconds.  

Figure 40  illustrates the constraint error measured from the accumulated 

difference in the distance between two links from the initial distance.  The 

Newton physics engine is not illustrated as it contains significantly greater 

error than other physics engines, averaging 30 times the error of other 

engines.  
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Figure 40 - Constraint error 

The Tokamak engine provides the best results for the constraints, solving 

them in the least time with the second best accuracy. ODE provides the most 

accurate results, but requires the most time to solve the constraints. 

Novodex provides the second greatest constraint error. This is an interesting 

result as Novodex is often employed in robotic simulation systems, such as 

the Microsoft Robotics Studio.  It should also be noted that ODE’s  slower and 

more accurate WorldStep integrator was employed, which is not always used 

in robotic simulators. 
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Figure 41 – Constraint timing 

4.1.4 Collision System 

 

Figure 42 – Collision test configuration  
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The collision system is an essential part of the physics engine. Failure to 

detect a collision during a simulation leads to incorrect results. To test the 

collision system an inverted square pyramid mesh is constructed. The 

pyramid apex is 1m deep, and the opening of the pyramid measures 2×2m². 

A 8×8 grid of spheres with a radius of 0.04m is dropped into the open 

pyramid.  

Penetration of the pyramid is detected by comparing all of the spheres 

positions to the polygons that make up the pyramid. If any sphere is less than 

its radius away from the pyramid’s polygons, then a penetration error is 

accumulated. This error is depicted in Figure 43. The engines that are not 

included in this graph (Novodex, ODE and Tokomak) fail the collision 

detection test (i.e. spheres fall through the pyramid). 

At the time of the impact, a large spike in the penetration error is 

experienced by all engines except Jiggle. Bullet manages to recover from the 

error and settles into a steady state with almost no error. Newton and 

TrueAxis penetration error evens out, but not at a low enough level to stop 

the motion of the spheres. 

The Tokamak engine only barely fails this test with one sphere passing 

through the pyramid. Novodex and ODE fail the test completely, due to the 

inability of these engines to correctly reorder and optimize the mesh 

structure passed to them by PAL, or from bugs in the mesh collision 

detection routines.  An alternative implementation of this test may allow 

Novodex and ODE to pass. 
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Figure 43 - Collision penetration error over time 

For some applications an integrator step of 100Hz is unrealistic, and larger 

steps are common. To test this extreme, the same test was repeated at 15Hz. 

The Bullet engine fails this test, however TrueAxis performs very well, and is 

capable of passing this test at just 5Hz. The varied performance in this test 

can be attributed to the engines contact generation, and whether the engine 

supports continuous collision detection. 

 

Figure 44 – Collision penetration error over time with an integrator step of 15Hz 
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4.1.5 Stacking 

 

 

Figure 45 -   Box stacking test configurations 
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Figure 46 – Realistic sphere stacking test 

A test that is important for game developers, but relatively unimportant for 

most simulation engineers is the efficiency of a physics engine in handling 

stacked objects.  In this test, a set of 1×1×1m
3
, 1kg cubes are dropped in a 

stack on top of one another, with a distance of 0.1m between them.  In the 

initial tests cubes were stacked directly on top of one another, however it 

was found that certain physics engines would detect this special case and 

would not evaluate the scenario. To compensate for this a second scenario 

was created. Each cube is displaced by a random amount of maximal 0.1m in 

both directions parallel to the ground. Automatic body sleeping is disabled. It 

is not feasible to verify what the physically correct behaviour for a stack of 

objects is, i.e. at which point the stack should collapse.  The results can then 

only be examined by visual inspection, and all the physics engines pass this 

test. (See Note #2, at the beginning of Section 4.1) 

A test for visually realistic results is to stack three spheres directly on top of 

each other. In the real world dropping three spheres on to one another 
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should not result in a stack. However, every physics engine that was tested 

stacked the three spheres, providing visually unrealistic results. Although the 

results produced by the engines are a mathematically correct 

implementation of the physics models, failure to add noise to the simulation 

results in unrealistic outcomes. Since no physics engine supports any noise 

models every engine fails this test.  

One metric that is possible to measure is the time taken to update the 

physics engine.  The computation time required to update the physics engine 

for the corresponding number of stack objects is illustrated in Figure 47. 

 

Figure 47 - Computational effort of stacked objects 

To give an indication of the penetration allowed by the collision system when 

solving object stacks the inter penetration of one box to the box below it is 

graphed in Figure 48. 
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Figure 48 – Penetration error of stacked objects 

4.2 Discussion of Physics Engine Test Results 

No single engine performed best at all tasks, few engines performed 

adequately in all aspects, and almost every test was performed best by a 

different engine. This illustrates the complexity involved in determining 

which physics engine a developer should select, and the difficulty in 

developing a general purpose physics engine.  

The only test which none of the simulators passed was the realistic stacking 

of three spheres. None of the simulators included any noise to improve the 

realism of the simulation. 

Novodex (Ageia PhysX) performed the best in the integrator test. Jiggle, ODE, 

and True Axis provided equally poor performance.  True Axis delivered the 

best results for modelling restitution, whereas Newton provided the best 

estimation for static friction. Although True Axis provided the best 

representation for one material property (restitution) it provided the worst 

representation for another (friction). This clearly demonstrates the difficulty 
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of selecting one physics engine for a particular simulated task. Even if a 

simulation engineer knows that material properties will play a significant role 

for their application, they must still decide on the importance of the exact 

material responses to select the appropriate simulation technology. 

 Tokamak provided excellent results for solving large chain constraints, in 

terms of computational efficiency and minimal error. It also was the most 

efficient for computing stacked objects. ODE provided the best results for 

constraint accuracy when configured to use a slower but accurate solver. 

Newton proved to have very poor constraint solvers for this test 

configuration. Generally, these tests demonstrated that accurate solutions to 

the multibody constraint problem can be found, in exchange for extra 

computational overhead. This is a result predicted in Chapter 2. 

In the collision penetration test Jiggle and Bullet performed very well, and 

TrueAxis performed very well for large integrator step sizes. Novodex, 

Tokamak and ODE failed this test, allowing spheres to pass through the walls 

of the pyramid. Again, this demonstrates the difficulty of adequately solving 

the collision detection and response problem. 

Of the open source engines the Bullet engine provided the best results 

overall, outperforming even some of the commercial engines. Tokamak was 

the most computationally efficient, however TrueAxis and Newton also 

performed well at low update rates. Novodex is the most feature complete 

system providing multiple constraint formulations, geometric 

representations, rigid body, soft body and fluid simulation options. 

This evaluation demonstrates the complexity involved in correctly simulating 

the motion of the system. Whilst this evaluation does provide an indication 

as to which physics engines would be most appropriate to a problem, it also 

indicates that no physics engine provides the best choice overall. For 
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example, when evaluating which engine to use for a walking robot, it would 

be difficult to argue whether the frictional effects between the ground and 

the foot will hold a larger influence on the overall simulation, or the timing of 

the foot-ground contacts, or the effects of an inaccurate solution to the 

multibody constraints that represent the multiple linkages in the robot’s leg.  

Ideally, the dynamic simulation system should provide accurate results for all 

areas that are important for the simulated system. Unfortunately, such a 

system does not exist. It is likely that choosing a physics engine based on one 

aspect over the other will lead to unrealistic results, since no physics engine 

provided accurate results across all the areas examined.  

If a control system is designed purely within the context of one simulation 

system, it is likely that the automated design process will create controllers 

which depend on the incorrect behaviour of the underlying simulator. 

Conversely, if the control system is designed within the context of multiple 

simulation systems, then a successful controller will have to be designed in 

such a way that it operates correctly for both the most accurate 

representation of the physical reality, as well as simplified representations. 

This should result in robust control systems that will operate in the most 

accurate representation of the physical world. 
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5 Evolutionary Control Algorithms 

Control engineering applies control theory to design systems that achieve a 

desired behaviour from a dynamical system. Control problems often include 

a large number of decision variables that are difficult to optimize using 

traditional approaches (96). Evolutionary algorithms are robust, directed 

search and optimization techniques that potentially provide superior 

performance and design flexibility for optimizing control problems (96). This 

chapter provides an overview of using evolutionary algorithms to optimize 

control system parameters.  

5.1 Control System Design 

The aim of a control system is to produce a desired set of outputs affecting 

the behaviour of a system from a given set of inputs and the system’s current 

state.  There are a number of different control algorithms, each has their 

advantages and disadvantages. 

5.1.1 PID Control System 

A proportional-integral-derivative controller (PID controller) is a control loop 

feedback mechanism (97) that attempts to correct the error between a 

measured process variable and a desired set point by calculating and then 

outputting a corrective action that can adjust the process accordingly. The 

PID controller is based upon three parameters. A proportional term, that 

determines the response to the current error, an integral term, that 

determines the response to previous errors, and a derivative term, that 

responds to the rate of change in the error value. These three separate terms 

can be combined in any manner to produce a variant of the PID controller. 

A proportional controller provides a linear response to an error by 

multiplying it by the term ��. 
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[(�� = ���(�� 

Where [(�� is the controller output , 

and  �(�� is the error value given from the difference between the desired 

set point and the current value. 
Equation 75 – Proportional controller 

An integral controller provides a response to the error history through an 

integral term �T. This term can reduce the steady state error of the P 

controller, but may contribute to system instability due to the response to 

past values (97). 

[(�� = 1�T 6 �(��(
7 �� = �T 6 �(��(

7 �� 

Equation 76 – Integral controller 

Finally, the derivative term provides a faster response to a change in the 

controllers input (97). 

[(�� = �� ����  

Equation 77 – Derivative controller 

The complete PID controller equation is given below: 

[(�� =  ���(�� + �T 6 �(��(
7 �� + �� ����  

Where  ��is the proportional term, 

  �T  is the integral term, 

and  �� is the derivative term. 
Equation 78  - PID controller 

PID controllers are extremely popular choices for control systems due to 

their simplicity and proven effectiveness (98).  However, if used alone PIDs 

often provide poor performance over alternative control structures.  

The performance of a single PID controller can be improved by coupling it 

with another control system. If a model of the controlled system is available, 
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then a PID controller can be combined with a simple feed-forward controller 

to provide reasonable results.  Alternatively, the PID can be coupled with a 

more advanced controller, such as a Fuzzy Logic or Spline control system, or 

simply placed in cascade with another PID controller.  

5.1.2 Spline Control System 

Splines are piecewise polynomial functions expressed by a set of control 

points (99). There are many different forms of splines, each with their own 

attributes. There are two desirable properties for a spline to possess. 

Continuity, so that the generated control signal translates to smooth higher 

order changes and locality of the control points, to reduce the influence of 

alterations of one control point to the overall shape of the spline. Two of the 

most commonly used splines in computer graphics (99) have also been 

applied to robotic control (100). The B-spline is defined by Equation 79. The 

B-spline features the two desirable properties of locality and continuity. Each 

segment of the B-spline curve is dependent on only a limited number of the 

neighbouring control points. Thus, a change in the position of a distant 

control point will not alter the shape of the entire spline (99)(100). The 

continuity of the spline is determined by the order of the polynomial 

functions utilized. A B-spline of order K is also generally C
K-2

 continuous.  A B-

spline function with four control points s0,…,s3 parameterized by t=0,…,1, is 

expressed in Equation 79. 

$(�� = �7B7(�� + �uBu(�� + �9B9(�� + ��B�(�� 

Where, B7(�� = − (²
� + (s

9 − (9 + u� 

 Bu(�� = (²
9 − �9 + 9� 

 B9(�� = − (²
� + (s

9 + (9 + u� 

 B�(�� = − (²
�  

Equation 79 – B-spline 
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The Hermite spline is expressed by the equations given in Equation 80. Unlike 

the B-spline, the curve generated from the spline passes through the control 

points that define the spline. Thus, a set of predetermined points can be 

smoothly interpolated by simply setting the points as the control points for 

the Hermite spline. Like the B-spline, the curve generated from the Hermite 

spline is dependent only on the neighbouring control points. However, the 

disadvantage of the Hermite spline is that the control point tangent values 

must be specified.  

The function used to interpolate the control points, given starting point p1, 

ending point p2, tangent values t1 and t2, and interpolation point s, is shown 

below: 

$(�� = ℎuyu + ℎ9y9 + ℎ��u + ℎ³�9 

Where ℎu = 2�� − 3�9 + 1 ℎ9 = −2�� + 3�9 ℎ� = �� − 2�9 + � 

and  ℎ³ = �� − �9 
Equation 80 – Hermite spline  

A spline controller provides a simple and fast method for producing control 

signals mapped from the current input state. Each spline is a separate single 

dimensional system providing a single output for a single input value, and 

thus can be coupled to provide higher order control systems. 
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Figure 49 – Two dimensional spline controller output space 

5.2 Genetic Algorithms 

A common class of evolutionary algorithms is the Genetic Algorithm (GA) 

(101). Similar to other evolutionary algorithms the Genetic Algorithm makes 

use of principles from Darwin’s theory of natural selection, ensuring the 

survival of the fittest. The genetic algorithm progresses towards a solution to 

a problem in an iterative process based from a history of potential solutions 

that are manipulated by a number of biologically inspired operations.   

The genetic algorithm operates on a set of encoded variables representing 

the parameters for the potential solution to a problem.  The parameters (or 

genes) are combined together to form a string of values, referred to as a 

chromosome (102).  Each of these possible solutions is then assigned a 

fitness value according to how optimal the solution is. The better solutions 

are then selected to “reproduce” with other solutions, generating a new set 

of chromosomes, which have inherited features from the chromosomes they 

were created from. The least fit (worst solutions) are less likely to be selected 
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for reproduction, and thus eventually are removed from the set of 

chromosomes on which the algorithm operates. In this manner the GA will 

search the problem set (or feasible design space) and optimize it towards 

better solutions. 

The basic methodology for the genetic algorithm consists of six steps: 

1. Randomly initialize a population of chromosomes 

2. Evaluate the fitness of each chromosome 

3. If the fitness of an individual meets the required criteria, then 

terminate the algorithm. 

4. Remove the lower fitness individuals 

5. Generate new individuals using genetic operators, determined by a 

certain selection scheme. 

6. Return to step two, unless the terminating criteria has been satisfied. 

 

Each iteration of these steps creates a new population of chromosomes. The 

total set of chromosomes at one iteration of the algorithm is known as a 

generation. As the algorithm progresses it searches through the solution 

space, refining the solutions to find one which will fulfil (or come as close as 

possible to fulfilling) the desired criteria, as described by the fitness function. 

The utility of genetic algorithms is their ability to be applied to problems 

without a deterministic algorithmic solution.  Certain satisfiability problems 

in robotic control fall under this category.  For example, there is no known 

algorithm to deterministically develop an optimal walking gait for a particular 

robot. An approach to designing a walking gait using genetic algorithms is to 

evolve a set of parameters controlling a gait generator.  The parameters 

completely control the type of gait that is produced by the generator.  We 

can assume there exists a set of parameters that will produce a suitable walk 

for the robot and environment – the problem is to find such a set.  Although 

we do not have a way to obtain these algorithmically, we can use a genetic 



130 

 

algorithm in a simulated environment to incrementally test and evolve 

populations of parameters to produce a suitable gait. 

5.2.1 Fitness Functions 

Each problem to be solved requires a unique fitness function describing that 

problem. Given a particular chromosome, a fitness function must return a 

numerical value indicating the appropriateness of the solution with respect 

to the overall goal (103). For some applications, such as function optimization 

problems, the fitness function will simply return the value of the function 

itself.  

For many applications there is no straightforward performance measurement 

of the goal, and thus it must be expressed as a combination of the desired 

factors. For example, if a fitness function is desired to describe how a robot 

should walk, it is arguable as to what properties of the robot’s movement 

describe an optimal gait. In these situations, the choice of the fitness 

function will greatly influence the acceptability of the resulting solution 

(104). 

If a fitness function can be broken into multiple desirable components which 

contribute to the overall fitness of a solution, a multi-objective genetic 

algorithm can be used. The desired solution can then be selected from a 

range of solutions which satisfy the fitness components individually. Multi-

objective genetic algorithms are discussed in more detail later in this chapter.  

An alternative to multi-objective algorithms is to explicitly weight the 

contributing components of a fitness function, to create a final fitness value 

representing a weighted sum of the components. In complex problems 

where it is difficult to describe an optimal solution, it may be easier to define 

poor solutions and apply a penalty function (102). For example, a walking 

robot may be rewarded for increasing its velocity, but penalized if this is 

achieved by bringing the robot into an unstable state. 



131 

 

Fitness functions cannot always directly express the system model and may 

need to be approximated. An example of this would be the motion control of 

an underwater robot. The real fitness function would be based on 

measurements of the movement of the real underwater robot. However, it 

may not be practical to evaluate the fitness function on the real robot 

thousands of times. A solution to this is to approximate the underwater 

movement using 3D computational fluid dynamics (CFD) simulations. These 

simulations are computationally intensive, and so the fluid behaviour may be 

approximated into lower order 2D approximations (105).  

If the fitness evaluations are very expensive to compute, an estimate of the 

fitness of a new individual can be approximated from the fitness of the 

parents of the individual and the surrounding solution space.  

 

Figure 50 – Approximate fitness function false optimum 

Although approximate fitness functions may reduce the number of fitness 

evaluations required, it is very likely the GA will converge to a false optimum 

due to the discrepancies between the approximate fitness function and the 

real fitness function (105). Therefore, approximate fitness models can only 

be used in cases where the real fitness function is also available for 

verification. 

False Optimum

-- Approximate Fitness Function
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5.2.2 Selection Schemes 

In the natural world the organisms which reproduce the most before dying 

will have the greatest influence on the next generation. In order to simulate 

this effect in the genetic algorithm, a selection scheme is used. The selection 

scheme determines which individuals of a given population will contribute to 

form the new individuals for the next generation. There are two key concerns 

with selection schemes, these are the fitness bias and the genetic spread. 

The fitness bias is the absolute difference between an individual's normalized 

fitness and its expected probability of reproduction.  The genetic spread is 

the range of possible values for the number of offspring of an individual 

(106).    There are two common types of selection schemes, implicit fitness 

selection (e.g. Tournament selection) and explicit fitness selection (e.g. 

Roulette Wheel selection) (102).   

Tournament selection is an implicit fitness selection scheme that operates by 

selecting two chromosomes from the available pool, and comparing their 

fitness values when they are evaluated against each other. The better of the 

two is then permitted to reproduce. Thus, the fitness function chosen for this 

scheme only needs to discriminate between the better of two entities.  To 

achieve good results with tournament selection over implicit fitness selection 

schemes a large population size is required, which is undesirable in 

optimization problems that are computationally intensive and have moving 

fitness functions (107). 

Truncation selection is a simple implicit fitness selection scheme. The 

population is sorted according to its fitness values and a proportion of the 

individuals with the highest fitness values are selected for reproduction. This 

selection scheme suffers from significant genetic bias and a loss of genetic 

diversity that can cause poor performance (106). 
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In roulette wheel selection (sometimes referred to as stochastic sampling 
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generation unchanged. Similarly, a steady-state GA will maintain a set 

population, containing the best individuals generated during the GA’s run 

and replace only a subset with new individuals. 

There have been extensive comparisons of selection schemes and as a 

general rule there is no single best scheme, instead the best scheme depends 

on the problem type and the chosen parameter set (102). However, most 

results tended to indicate that stochastic universal sampling should 

outperform the roulette wheel selection approach (102). 

5.2.3 Genetic Operators 

The operators determine the method in which one or more chromosomes 

are combined to produce a new chromosome. Traditional approaches utilize 

only two operators: Mutate, and Crossover (102). Crossover takes two 

individuals and divides the string into two portions at a randomly selected 

point inside the encoded bit string. This produces two “head” segments and 

two “tail” segments. The two tail segments for the chromosomes are then 

interchanged, resulting in two new chromosomes where the bit string 

preceding the selected bit position belongs to one parent, and the remaining 

portion belongs to the other parent.  

 

Figure 52 – Genetic crossover operator 

The mutate operator randomly selects one bit in the chromosome string, and 

inverts the value of the bit. Traditionally, the crossover operator has been 

viewed as the more important of the two techniques for exploring the 
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solution space, however without the mutate operator portions of the 

solution space may not be searched, as the initial chromosomes may not 

contain all possible bit values (102). 

 

Figure 53 – Genetic mutate operator 

There are a number of extensions to the set of operators used. The two point 

crossover operates similarly to the single point crossover described 

previously, except that the chromosomes are now split in two places rather 

than just one (109). The mutate operator can also be enhanced to operate on 

larger portions of the chromosome than just one bit, increasing the 

randomness that can be added to a search in one operation. Further 

extensions rely on operating on the bit string under the assumption that 

portions of the bit string represent non-binary values (such as 8 bit integer 

values, or 32 bit floating point values). Two operators commonly used that 

rely on this interpretation of the chromosome are the Non-Binary Average, 

and the Non-Binary Creep operators (109). Non-Binary Average interprets 

the chromosome as a string of higher cardinality symbols and calculates the 

arithmetic average of the two chromosomes to produce the new individual. 

Likewise, Non-Binary Creep treats the chromosomes as strings of higher 

cardinality symbols and increments or decrements the values of these strings 

by a small randomly generated amount (109). 
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Figure 54 – Non-binary average operator 

5.2.4 Encoding 

The encoding method chosen to transform the controller parameters to a 

chromosome can have a large effect on the performance of the genetic 

algorithm. Compact encoding allows the genetic algorithm to perform 

efficiently, as it reduces the search space for the GA (110). There are two 

common encoding techniques applied to the generation of a chromosome 

(103)(109). Direct encoding explicitly specifies every parameter within the 

chromosome, whereas indirect encoding uses a set of rules to reconstruct 

the complete parameter space. Direct encoding has the advantages that it is 

a simple and powerful representation, however the resulting chromosome 

can be quite large. Indirect encoding is far more compact, yet often it only 

represents a highly restrictive set of the original structures. 

Regardless of which encoding technique is selected, the problem variables 

must be represented in a unique binary format. The encoding mechanism 

depends on the nature of the problem variables. For example, the use of a 

velocity based or position based control system can be selected with a 

discrete encoding. However, the controller parameters are more likely to be 

represented as continuous variables.  

The most common solution to encoding continuous variables is to represent 

them using fixed point arithmetic (111).  This can be achieved by simply 

scaling a continuous value within a fixed range. A continuous value that 

ranges from -1.28 to 1.28 could be multiplied by 100 to result in an 8 bit 

integer representation that ranges from -128 to 128. A direct binary encoding 
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is often undesirable as multiple bits must change to represent a small 

increment (e.g.: changing binary 127 to 128 requires 8 bits to flip). A solution 

to this is to use Gray codes, where successive values differ by only one bit 

(111). 

The number of bits used to represent a variable directly affects the precision 

of the resulting solution and the overall size of the search space for the GA 

(110). Thus a tradeoff must be made between the solutions precision and the 

size of the search. One mechanism that can alleviate this tradeoff is dynamic 

parameter encoding (110). This mechanism monitors convergence statistics 

from the GA to adaptively modify the length of the binary encoded variables 

representation. Similar to many other modifications to the traditional GA, 

dynamic parameter encoding only provides performance enhancements for 

some problem types (110). 

5.2.5 Staged Evolution 

A number of possibilities exist in enhancing the performance of a genetic 

algorithm. Staged evolution is based on the concept of behavioural memory, 

and increases the GAs convergence rate by introducing a staged set of 

manageable challenges (112). Initially limiting the search to a subset of the 

full solution space enables an approximate solution to be determined. 

Incrementally increasing the complexity of the problem will increase the 

solution space, providing the possibility of increased performance as further 

refinements of the solution are possible. Applying this strategy to a particular 

problem task, requires that the tasks is capable of being split into further 

smaller sub-tasks which can be solved in order to contribute to the overall 

solution. 

Staged Evolution has similar effects to other approximate fitness GAs (such 

as approximate Hierarchical GAs (105)) and adaptive encoding techniques 

(such as dynamic parameter encoding (110)). All of these techniques attempt 
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to reduce the computational requirements of the GA either by reducing the 

search space, or reducing the cost of the GA evaluations. Whilst other 

techniques are relatively general to the GA problem, Staged Evolution is 

highly dependent on the nature of the problem. This enables the designer to 

manually control and balance the performance of the GA with the negative 

aspects of imprecise and false optimums in a task-specific manner. 

5.2.6 Premature Termination 

Genetic algorithms may require thousands of individuals to be evaluated 

before converging to a solution. If the individual is evaluated in a full physics 

simulation, it can take a long time to evaluate its fitness. Ziegler and Banzhaf 

(100) introduce the concept of premature termination. During the evaluation 

of an individual in a physical simulation, it may be possible to determine that 

the individual has made an irrevocable error, and it is unlikely to obtain a 

high fitness score. These individuals can have their evaluation terminated at 

the point where the error has occurred. This saves computing time as the 

entire physics simulation is not carried through to the final goal. 

 

Figure 55 – Left -  An individual that does not stray from the ideal trajectory. Right – an 

individual that exceeds the acceptable variance in trajectory and can be prematurely 

terminated. 

For example, if an object is to move from its starting position towards a goal 

any individual that strays too far from the ideal trajectory can be terminated. 

Due to the momentum behind the object, it is unlikely that it will be able to 

return to its goal in an acceptable manner. This is illustrated in Figure 55.  

Ideal Trajectory Ideal Trajectory

x

Abortion
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Ziegler and Banzhaf (100) find that premature termination speeds up the 

evaluation process on average by 250%.  Furthermore, they determine that 

the speedup is largest at the beginning of the simulation, as this is the point 

where individuals are most likely to make errors as they are furthest from the 

ideal solution at that point. This is beneficial as it provides intermediary 

solutions faster, enabling the designer to receive early feedback on the 

progress of the evolution. 

5.2.7 Multi-Objective Optimization 

For many design problems there are multiple objectives that should be met. 

Often, these objectives are trade-offs between each other. GAs that 

simultaneously optimize a collection of objective functions are called Multi-

Objective Genetic Algorithms (MOGAs). Since the MOGA has multiple 

objectives, there may be no definitive optimum solution. Instead, there are a 

set of optimal solutions that represent the various combinations of 

compromises and trade-offs between objectives. This set of equally valid 

solutions are referred to as the Pareto frontier or Pareto set(113). If a 

solution can be improved by improving one objective value without altering 

the other objective values the solution is said to be Pareto dominated. A 

pareto front of two objective functions is illustrated in Figure 56.  

 

Figure 56 – Pareto front 

- Pareto Front
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Since the overall goal in a multi-objective problem is a balance of multiple 

sub-objectives, the designer will often select one solution according to their 

preference. The designers preferences can be defined in terms of a function 

called the preference function (113).  

An alternative to Pareto optimality is to define a single ideal solution point 

(113). This ideal point (or utopia point) represents a solution where each sub-

objective is at its optimum. For example, if minimizing a MO problem, the 

utopia point represents the point where each of the objective functions are 

at their minimum.  

In general, the utopian point is unattainable, however the closest possible 

point to the utopian point is the best possible solution. Again, this can 

involve the designers preference in defining the utopian point and the 

distance measurement (e.g. Euclidean) for selecting the closest solution.  

A common alternative to involving the designer in selecting preferences is to 

form a global criterion (113). This is a scalar function that combines the 

multiple objectives, not necessarily reflecting a designer’s preferences. The 

most common approach is to use a weighted sum of the objective functions. 

$ = v �T�T(��=
T´u

 

Where �T  is the scalar weighting, 

and  �T(� is the set of objective functions 
Equation 81 – Weighted sum 

The weightings can be determined from mathematical analysis, such as the 

partial weighting method, which identifies common characteristics in 

objective functions and groups them to form independent weightings (113). 

A simpler approach is to map the designer’s preferences to objective 

weightings. This can be done via a number of techniques.  
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Ranking methods or Categorization methods(113) require the designer to 

rank the importance of the objective functions and then set the weightings 

with consistent increments from least to most important. Rating methods 

require designers to indicate the relative importance of each objective 

function.  In the eigenvalue rating method (113) each unique pair of objective 

functions is compared to yield a comparison matrix, and the eigenvalue of 

this matrix is then used as the scaling weights. 

There are three key approaches to implementing a MOGA(114). Criterion 

selection approaches such as vector evaluated GA(113), where sub-

populations are evaluated one objective function at a time. Aggregation 

based approaches use weighting functions to sum up the objective values 

(115). Finally, Pareto based approaches such as the non-dominated sorting 

GA(116) maintain the previous population and then sort the combined 

population to eliminate non-dominated solutions from the next generation.  

Zitler et al (114) compare a number of Multi Objective Genetic Algorithms 

and find that criterion selection and aggregation approaches perform 

approximately equally well, with Pareto based approaches performing best. 

Marler and Arora (113) survey applied multiobjective techniques and 

conclude that multiobjective approaches require significantly more 

computational effort . They find that unless the nature of the problem is very 

well understood, it is unlikely that the multiobjective GA will be configured in 

a manner that will outperform an objective summation method or single 

objective GA.  

5.3 Analysis of GA performance 

The conclusions found from surveys on the application of evolutionary 

algorithms to engineering problems in Section 5.2 indicate that there is no 

ideal algorithm configuration that will guarantee ideal performance for any 



 

given problem. Similarly, the fields of multiobjective genetic algorithms an

approximate fitness genetic algorithms come to no conclusive finding. The 

findings indicate that the performance of the GA will be task

reason the performance of a number of genetic algorithms was investigated. 

The problem task was to evolve a walking gait for a simple simulated bipedal 

robot.  

Figure 57 – Simple Robot Model

A simple robot was modelled consisting of two regular, geometrically 

identical legs, with three joints per leg. This gives a total of six degrees of 

freedom. Each join has a separate cascaded controller attached, thus a total 

of 6 joint controllers for eac

large feet, and lacked a complete torso. This is a highly unrealistic model of a 

robot and is only used to trial and

Although multiobjective GA’s can be applied to the robot gait task, many 

robotics problems, such as wall following or lane tracking are single

tasks. Marler and Arora (113)

provide benefits over single objective GAs when used with weighted sum 

fitness objectives, unless they are configured for a very specific task. The 

approaches developed in this thesis are intended to be general and 
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given problem. Similarly, the fields of multiobjective genetic algorithms an

approximate fitness genetic algorithms come to no conclusive finding. The 

findings indicate that the performance of the GA will be task-specific. For this 

reason the performance of a number of genetic algorithms was investigated. 

evolve a walking gait for a simple simulated bipedal 

 

Simple Robot Model 

A simple robot was modelled consisting of two regular, geometrically 

identical legs, with three joints per leg. This gives a total of six degrees of 

freedom. Each join has a separate cascaded controller attached, thus a total 

of 6 joint controllers for each gait are evolved. The robot (See Figure 

large feet, and lacked a complete torso. This is a highly unrealistic model of a 

robot and is only used to trial and optimize the evolution process. 

Although multiobjective GA’s can be applied to the robot gait task, many 

robotics problems, such as wall following or lane tracking are single-

(113) extensive survey find that MOGA do not 

provide benefits over single objective GAs when used with weighted sum 

fitness objectives, unless they are configured for a very specific task. The 

approaches developed in this thesis are intended to be general and 
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approximate fitness genetic algorithms come to no conclusive finding. The 

specific. For this 

reason the performance of a number of genetic algorithms was investigated. 
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A simple robot was modelled consisting of two regular, geometrically 

identical legs, with three joints per leg. This gives a total of six degrees of 

freedom. Each join has a separate cascaded controller attached, thus a total 

Figure 57) had 

large feet, and lacked a complete torso. This is a highly unrealistic model of a 

Although multiobjective GA’s can be applied to the robot gait task, many 

-objective 
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provide benefits over single objective GAs when used with weighted sum 

fitness objectives, unless they are configured for a very specific task. The 

approaches developed in this thesis are intended to be general and 
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applicable to any robotics tasks. Therefore MOGA approaches are not 

investigated. 

The literature on approximate fitness functions and staged evolution imply 

that there may be an advantage in these approaches in terms of reducing 

computation time and improving the robustness of the evaluated controllers 

(105).   Premature termination should also provide a reduction in the 

computation time required to evolve a controller. The influence of staged 

evolution and premature termination on the fitness of the individuals 

produced, and the computational speedup is investigated. 

Beasley et al. (102) indicate that stochastic universal sampling should provide 

benefits over roulette wheel selection and that steady state GAs and GAs 

with elitism may provide benefits. Again, the performance of each GA 

configuration is only found to be beneficial for certain problem tasks. 

Therefore these four GA configurations are evaluated in the context of gait 

controller problem. The effect of premature termination and staged 

evolution on each GA is evaluated. 

5.3.1 Genetic Algorithm Configurations 

Four different configurations of a single objective genetic algorithm were 

implemented to evolve the controller. The first was a traditional GA using 

roulette wheel selection with two operators: a one-point crossover, and a 

mutate operator. This configuration was used as this is a commonly 

implemented version of the genetic algorithm, and hence can provide a 

benchmark figure.  

The second configuration employed stochastic universal sampling and 

additional genetic operators. The third and fourth configurations used steady 

state GA’s with low and high values of elitism respectively. 
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Genetic Algorithm Selection Schemes Operators 

1. Traditional  Roulette Wheel Crossover (70%)  

Mutate (30%) 

2. Enhanced Stochastic Universal 

Sampling 

Crossover (30%),  

Mutate (10%), 

Random (25%),  

Average (30%),  

Inversion (5%) 

3. Enhanced plus 

random 

Steady State selection 

with Stochastic Universal 

Sampling and 

replacement with 

Random Selection. Only 

10% of the population is 

kept. 

Crossover (30%),  

Mutate (10%),  

Random (25%),  

Average (30%),  

Inversion (5%) 

4. Enhanced plus 

high elitism 

Steady State selection 

with Stochastic Universal 

Sampling and 

replacement according to 

Fitness. 75% of the 

population is kept. 

Crossover (35%),  

Mutate (10%),  

Random (10%) ,  

Average (30%),  

Inversion (5%),  

Creep(10%) 

Table 3 - Genetic Algorithm Parameters 
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To support the staged evolution, the spline controller must support a variety 

of encodings. In its simplest form, each control point is at a fixed equal 

distance along the spline, and only one dimension of the control point is 

encoded. For the next stage of evolution the constraint of equidistant control 

points along the spline is removed, and each control point is then encoded as 

two values (one for each dimension – percentage walk cycle complete, and 

joint input value). Finally, to enhance the smoothness of the gait, the 

complete spline is encoded with two dimensional control points with tangent 

information. All controller parameters are encoded in a fixed point format. 

This encoding scheme allows a progressively larger chromosome to be 

evolved, enabling the final gait solution to be refined until an optimal gait is 

found. Encoding the control system as outlined provides compact 

chromosomes, and enables the GA to perform staged evolution.  

5.3.2 Genetic Algorithm Analysis 

In order to determine the efficiency of each of the proposed genetic 

algorithm optimizations a small test was run, in which a walking gait for the 

simple robot was evolved. The gait was simulated for seven seconds, for a 

maximum of thirty generations. The initial population set provided to all GA 

configurations for each attempt was identical, and all tests were run on 800 

MHz Pentium 3 systems running Windows NT. A number of trials were 

performed for each GA, and each trial was executed ten times. All results 

presented are numerical averages of all trials. The GAs were configured with 

a population size of 50 individuals and used identical encoding schemes and 

fitness functions. 



 

Figure 58 – Percentage of original simulation time required for GA enhancements

The first aspect investigated was the effect of staged evolution and 

premature termination on the computing time required to evaluate the 

genetic algorithm. The graph in 

to complete 20 generations of each of the genetic algorithm configurations 

using different optimization techniques. Each algorithms simulation time is 

compared to its baseline configuration without premature 

staged evolution. From the results obtained early termination appears to 

produce reduced evolution periods averaging at 39.8% of the original 

computation time.  By including staged evolution the times are again reduced 

by an average of 14.5%. Thus by using both staged evolution and early 

termination the evolution period is, on average, reduced to 34% of the 

original computation time. 
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Percentage of original simulation time required for GA enhancements

The first aspect investigated was the effect of staged evolution and 

premature termination on the computing time required to evaluate the 

genetic algorithm. The graph in Figure 58 shows the simulation time required 

to complete 20 generations of each of the genetic algorithm configurations 

using different optimization techniques. Each algorithms simulation time is 

compared to its baseline configuration without premature termination and 

staged evolution. From the results obtained early termination appears to 

produce reduced evolution periods averaging at 39.8% of the original 

computation time.  By including staged evolution the times are again reduced 

%. Thus by using both staged evolution and early 

termination the evolution period is, on average, reduced to 34% of the 

 

The second factor investigated was how the configuration of the GA 

influenced the change in fitness over each generation. The average increase 

in fitness of the population per generation is shown in Figure 59. 
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termination and 

staged evolution. From the results obtained early termination appears to 

produce reduced evolution periods averaging at 39.8% of the original 

computation time.  By including staged evolution the times are again reduced 

%. Thus by using both staged evolution and early 

termination the evolution period is, on average, reduced to 34% of the 

The second factor investigated was how the configuration of the GA 

generation. The average increase 
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Figure 59 – Average Fitness Increase per Generation 

The early termination causes the conventional genetic algorithm to decrease 

its average increase in fitness, whilst the other forms of genetic algorithms 

appear to gain in fitness. A possible explanation for the abnormal result from 

the conventional algorithm is that it relies on the randomness of other 

chromosomes in order to be able to generate new chromosomes with 

increased fitness. Each of the other genetic algorithms contain either an 

operator which can introduce randomness (random replacement), or a 

selection scheme which increases randomness (random selection). 

For staged evolution with early termination the fitness per generation greatly 

increases for the first two forms of the genetic algorithm (conventional & 

enhanced), but the steady state forms do not benefit. The GA configurations 

using random selection take longer to converge towards a solution, thus, 

when the staged evolution takes place in generation 10, the population is not 

close enough to a solution to be able to benefit from moving to the next 

stage. The other two forms of GA have somewhat converged by this time, 

and thus they can take advantage from the next stage. 

From the results obtained it would indicate that early simulation termination 

can provide significant reductions in evolution times, and genetic algorithms 
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which produce enough randomness will not be adversely affected by having 

the worse chromosomes terminated. The ability to take advantage of the 

staged evolution process appears to depend on the current status of the 

population of the GA. If the population has begun to converge, then the 

staged evolution opens up a new prospect for higher rating fitness 

chromosomes.  

For all cases the increase in fitness was highest for the enhanced genetic 

algorithm, whereas the performance gain over the traditional approach for 

the other configurations varied. Since staged evolution combined with 

premature termination provided equal or superior fitness performance to 

the full simulation in all cases, yet dramatically reduced computation time, 

(117) this form of GA will be employed for all experiments. 
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6 Bipedal Robot Control Experiments 

Legged robots exhibit a number of advantages for locomotion (118). The 

mobility offered by legged vehicles is far greater than that of wheeled or 

tracked vehicles, as they are not limited to paved terrain. The increased 

mobility offered allows for a far larger range of applications to legged 

vehicles. Another incentive for exploring the use of legs for locomotion is 

that it provides an insight to the systems responsible for human and animal 

locomotion. Humans are capable of complex movements, whilst maintaining 

orientation, balance and speed. Robots that could mimic human movements 

could seamlessly integrate with the human world, enlarging the number of 

possible applications for legged vehicles. This makes the study of bipedal 

locomotion particularly attractive. 

Although there are a multitude of existing locomotion control techniques and 

well described design processes, the automated generation of these 

controllers for robots provides significant advantages. Often, the design 

process is quite complex, time consuming to perform, and requires the 

control system to be completely redesigned for small alterations to the robot 

(23). 

By evolving the locomotion controller the robot designer is alleviated from 

the controller design process. The control system becomes more flexible, as 

the robot can improve its controller to cope with environmental or structural 

changes. The resulting controllers are more adaptive to the robot’s 

environment, more robust, more flexible, and can provide superior 

performance to human designed controllers (23). 
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6.1 Physics Simulation Problems for Legged 

Robots 

Using a simulator to accurately model a legged robot may create a number of 

difficulties. Bipedal locomotion is arguably the most complex legged 

locomotion to control and simulate. The balance and control of a bipedal 

robot is highly dependent on the ground reaction forces exerted under the 

feet.  The two main problem areas are: 

• Accurately calculating the solution to the link constraints that 

represent the dynamics of each degree of freedom in the robot  

• Accurately calculating the interaction between the robot’s foot and 

the ground. 

Whilst both of these topics were discussed in general in the Dynamic 

Simulation section of this thesis there are some more specific issues relating 

to modelling a legged robot. Solving the robot’s link constraints accurately is 

a well studied problem and an accurate solution can be achieved through the 

use of a high order integrator with a reduced coordinate constraint solver 

(Such as Featherstone’s articulated body algorithm (58)). However, 

accurately calculating the correct response to the foot-ground interaction is 

very difficult. In order to have accurate collision detection, a continuous 

collision detection system is desirable. However, employing higher order 

integrators can prove difficult with a continuous collision approach, due to 

the complexities involved in a correct implementation (31). As a result, there 

is often a trade-off between the collision detection system and the accuracy 

for solving the constraints. 

Assuming that a physics simulator is capable of determining the exact 

geometric colliding areas, calculating the correct response to the collision is 

problematic. Constraint based methods will typically formulate a linear 



 

complimentary problem (LCP) to calculate the contact forces that comply 

with the entire robot’s linkage 

constraint based methods is still an open problem, often requiring an 

increasing set of active contacts. When considering friction, the convexity of 

the LCP disappears and a correct solution cannot be guarante

must be represented with a 

undesirable effects. As the set of active contacts employed by the physics 

engine increases, the likelihood of an unstable solution also in

If two objects penetrate, then the physics simulator must correct the position 

of the object, usually by applying an impulse. 

has penetrated the ground plane. The simplest approach to solving the 

penetration condition is simply to apply a linear projection to generate the 

direction of the impulse 

resolution to the collision. A more physically realistic solution is to apply a 

non-linear response that contains an angular impulse 

Figure 60 – Possible collision responses. From left to right: p

non-linear projection and a physically accurate result.

Applying a non-linear response can create some additional problems, such as 

missing situations where new contact points should be generated, or altering 

the penetration depth of the other contact points on the body. Both of these 

situations are illustrated in 

has penetrated the ground

typical contact resolution algorithm will select the contact point with the 

greatest penetration depth and resolve that point. This process can then be 
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complimentary problem (LCP) to calculate the contact forces that comply 

with the entire robot’s linkage structure. Efficient contact determination for 

constraint based methods is still an open problem, often requiring an 

increasing set of active contacts. When considering friction, the convexity of 

the LCP disappears and a correct solution cannot be guarante

must be represented with a polyhedral approximation creating further 

undesirable effects. As the set of active contacts employed by the physics 

engine increases, the likelihood of an unstable solution also in

If two objects penetrate, then the physics simulator must correct the position 

of the object, usually by applying an impulse. Figure 60 illustrates a box tha

has penetrated the ground plane. The simplest approach to solving the 

penetration condition is simply to apply a linear projection to generate the 

direction of the impulse (119).  This results in a physically unrealistic 

lution to the collision. A more physically realistic solution is to apply a 

linear response that contains an angular impulse (119). 
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linear projection and a physically accurate result. 
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repeated and eventually the body will come to rest on the

the complexity of maintaining other constraints and an acceptable 

computation time, the number of iterations in this stage is typically limited, 

and thus it is unlikely a completely satisfied condition will be met by the end 

of a timestep. 

This iteration process is further complicated by the possibility of introducing 

new contact points. Since collision detection and contact generation is a 

computationally expensive task, it is not practical to repeat it during each 

step in the constraint resolution process. There are a number of contact 

resolution and update algorithms available that try to minimize the 

influences of these problems, however none can completely solve the 

contact penetration problem.

Figure 61 – Contact resolution. Left: repeating resolutions. Right: Missed contact.

6.1.1 Multiple Simulators

Since the interpenetration problem cannot be accurately solved, an 

approximate solution is always provided by the physics simulator. Often this 

results in new, or unresolved penetrating contacts at the end of a time step. 
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Multiple Simulators 

Since the interpenetration problem cannot be accurately solved, an 

approximate solution is always provided by the physics simulator. Often this 

solved penetrating contacts at the end of a time step. 

surface. Due to 

the complexity of maintaining other constraints and an acceptable 

computation time, the number of iterations in this stage is typically limited, 

and thus it is unlikely a completely satisfied condition will be met by the end 

This iteration process is further complicated by the possibility of introducing 

new contact points. Since collision detection and contact generation is a 

computationally expensive task, it is not practical to repeat it during each 

esolution process. There are a number of contact 

resolution and update algorithms available that try to minimize the 

influences of these problems, however none can completely solve the 

tact resolution. Left: repeating resolutions. Right: Missed contact. 

Since the interpenetration problem cannot be accurately solved, an 

approximate solution is always provided by the physics simulator. Often this 

solved penetrating contacts at the end of a time step. 
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A physics engine may over-compensate for this situation in the next time 

step by applying a large impulse to the body. 

This causes two problems for evolving a simulated robot controller. First, the 

physically unrealistic behaviour of the simulator may result in an evolved gait 

that is not able to transfer to reality. A common example of this in an evolved 

bipeds behaviour is a where a foot interpenetrates to great depth, causing 

the physics engine to provide a large impulse to correct the interpenetration. 

In turn, this causes the robot to gain an unrealistic amount of forwards or 

upwards momentum.  

Second, an evolutionary algorithm is extremely good at identifying and 

exploiting any niche advantages available in the evolutionary problem. 

Typically, this will result in the EA locating a solution involving the robot’s 

foot penetrating the terrain, consequently generating a large forwards 

impulse. This can generate a fitness value far greater than those available to 

solutions that do not profit from large interpenetrations. As a result, the EA 

will often optimize the controller to cause large interpenetrations and come 

to rely on a set of physically unrealistic solutions 

Using multiple simulation systems ensures that this particular aspect of the 

physics based simulation is unlikely to occur. Each physical simulator employs 

different algorithms for solving the contact penetration problem, so it is very 

unlikely that a single solution will benefit from a deep penetration impulse 

across all simulators. 

6.2 Evolving Control Architectures for Bipedal 

Locomotion 

There are a number of control systems that are applicable to the objective of 

robot locomotion. Possible control systems range from simple oscillators 
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(120) to simple assembly programs (121) to neural networks (23). The 

simplest oscillators consist of a set of sinusoidal function generators whose 

outputs are combined to generate the control signal for an actuator. These 

systems can represent a range of outputs by altering the phase and 

amplitude of the sinusoids (120). However, these systems are generally 

incapable of expressing the complexity required for sustained locomotion 

(122). Thus, more complicated forms of control are desirable. 

A common technique for maintaining bipedal stability is the use of the Zero 

tipping Moment Point (ZMP) constraint. The ZMP is the point on the ground 

where the sum of all the moments of the active forces is equal to zero (See 

Figure 63). If the ZMP is within the support polygon formed by the feet, then 

the robot will be stable. If the ZMP leaves that region the robot will begin to 

fall. Using this constraint with the combination of pressure sensors has been 

the key to the walking control of robots such as Honda’s ASIMO (123). The 

disadvantage of this technique is that the ZMP constraint is too tight, 

resulting in limited gaits, and it will only apply to legged characters and 

cannot be applied to general morphologies (e.g. snakes). 

 
 

Figure 62 – Bipedal robot control algorithms Figure 63 – ZMP 
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Another common technique for locomotion control is the use of state 

machines (124). This control strategy has been successfully demonstrated for 

a large range of morphologies and applications (124)(125). Yin et al. (124) 

presented a state machine based approach for the control of virtual bipedal 

characters. The disadvantage to the state based approach is that an 

appropriate number of states must be constructed for differing gaits and 

morphologies. Yin et al. inserted extra “dummy” states to the control system 

to enable the transition between different gaits for the same morphology. 

This approach would not scale to a general morphological configuration. 

Neural networks have demonstrated stable control for a variety of 

morphological configurations of both robots and virtual characters 

(23)(104)(126). Typically, neural control of legged characters mimics the 

central pattern generator seen in real animals. The automatic generation and 

optimization of locomotion gaits has been demonstrated for a variety of 

configurations (23)(104).  This makes neural networks an attractive choice for 

controlling generic robot configurations.  

Genetic algorithms were applied to the evolution of neural controllers for 

robot locomotion by numerous researchers (120)(125)(127). Lewis et al. 

(125) successfully generated locomotion patterns for a hexapod robot using a 

simple traditional genetic algorithm with one point crossover and mutate. 

Isjpreet (127) evolved a controller for a simulated salamander using an 

enhanced genetic algorithm.  The large number of experiments in this area 

clearly indicates that genetic algorithms are capable of evolving neural 

controls that can describe legged robot locomotion.  

The genetic programming approach has been shown to successfully generate 

locomotion patterns for various control strategies. Banzhaf et al. (121) 

demonstrated the pure genetic programming approach to develop assembly 

programs for robot control. The system was then expanded to control a 
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hexapod robot (100) using a B-Spline based approach. This demonstrated 

that both the genetic programming approach and the genetic algorithm 

approach are capable of evolving adequate control systems for legged 

locomotion (127). 

Parker et al. (128) explored the use of cyclic genetic algorithms for 

locomotion control of a small hexapod robot. Their system demonstrated 

that the cyclic nature needed to generate the oscillatory motions necessary 

for legged robot locomotion could be abstracted from the control system and 

transferred and encoded into the genetic algorithms chromosomes. 

Since the overall goal for the system is to develop control architectures for a 

varied number of systems it is desirable to have separable controllers, whose 

complexity can be increased incrementally.  This allows for more efficient 

evolution. It is also desirable to have a simple control structure that can be 

easily interpreted by a human for debugging, analysis and validation 

purposes.  

Each of the outlined control strategies has its advantages and disadvantages. 

Simple oscillators are not capable of expressing the range of motions 

required by most applications, and common algorithmic approaches are tied 

to the morphological or gait structure.  Neural networks provide flexible 

control, but are difficult to manipulate manually. A spline based control 

system provides a greater range of motions than simple oscillators, whilst 

also providing a control structure that is separable, human understandable, 

and can have its complexity incrementally increased. Previous approaches 

have demonstrated the automated generation of spline-based gait control 

systems for simulated and real robots (100) (129). Hence a spline controller 

was selected for the biped control task. 
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6.3 Spline Controller 

The implemented spline controller consists of a set of joined Hermite splines. 

One set contains robot initialization information, to move the joints into the 

correct positions and enable a smooth transition from the robot’s standing 

state to a travelling state. The second set of splines contains the cyclic 

information for the robot’s gait. Each spline can be defined by a variable 

number of control points, with variable degrees of freedom. A pair of start 

and cyclic splines corresponds to the set of control signals required to drive 

one actuator within the robot. 

Cubic Hermite splines were implemented in the controller as they offer a 

number of desirable characteristics over other splines. The major advantage 

of the Hermite spline is that the curve passes through all the control points. 

As the position and tangent are explicitly specified at the ends of each 

segment, it is easy to create a continuous curve. Another attribute of 

Hermite splines is that altering one control point on the curve will only affect 

the shape of one segment of the curve, leaving the rest of the curve’s shape 

preserved.  

An example of a simple spline controller is illustrated in Figure 64. This curve 

indicates the controller’s output value for one actuator. 

 

Figure 64 - Sample spline controller  
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In order to evolve the spline controller with a genetic algorithm, the 

controller’s parameters need to be encoded into chromosome 

representations. To enable support for staged evolution, the controller needs 

to be specifically designed, such that the evolution can proceed in this 

manner. The encoded spline controller treated each control point value as a 

8 bit fixed point number. In the initial phase of evolution, the control point 

locations within the walking cycle time were equally distributed. This 

provided each control point with only one degree of freedom and reduced 

the available solution space, but also significantly reduced the complexity of 

the chromosome required to describe the controller. In the following stage of 

evolution, the equally distributed time constraint was dropped, providing the 

control points with an additional dimension of freedom. Finally the tangent 

values for the control points in the spline were added to the chromosome, 

allowing final refinement of the solution. The output of the spline controller 

is coupled to a PID controller. If the spline control system is directly 

connected to the joint angles, then over time, the accumulated errors from 

the open loop control cause the gait to deviate from the desired gait. This is 

illustrated in Figure 65, where a simple simulated robot’s torso is slowly 

dropping towards the ground. 

 

Figure 65 – Walking gait with open loop control 

6.3.1 Sensory Feedback 

Without any feedback the control system for the robot can not react to any 

changes in the environment. Feedback can be used to improve the stability 

of the robot’s gait and correct any deviations from the desired path.  
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Figure 66 – Walking gait with closed loop control 

In order to incorporate sensor feedback information into the spline 

controller, another dimension must be added to the controller. The extended 

control points specify their locations within both the gaits cycle time, and the 

feedback value. This results in a set of control surfaces for each actuator. The 

number of control points required for the simple spline controller is given by:  

#(4 + a� 

Where , a is the number of actuators 

  i is the number of control points in the initialization spline 

  c is the number of control points in the cyclic spline 
Equation 82 – Simple spline controller complexity 

Extending the controller to include feedback in this form significantly 

increases the number of control points required as indicated below. 

#(4 + a$� 

Where  f is the number of control points used to sample the feedback 
Equation 83 – Extended spline controller complexity 

The actuator evaluates the desired output value from the enhanced 

controller as a function of both the cycle time and the input reading from the 

sensor.  

Chapter 3 presented a wide range of sensors that can provide a variety of 

feedback signals ranging from angular velocity to distance readings. In adding 

a sensor to a robot the most appropriate sensor type and the best position 

for the sensor must be determined.  

After some initial experimentation, the most appropriate sensory feedback 

was found to be the torsos inclination towards the ground plane. This can be 
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measured with an inclinometer attached to the torso of the robot. Thus, the 

resultant controller was expressed in terms of the percentage cycle time, the 

torsos inclination angle, and the output control signal. 

6.4 Gait Controller Evolved in a High Fidelity 

Simulator  

To ascertain the issues related to the modelling, simulation, and evolution of 

a bipedal robot control system an initial test was performed using a robotics 

specific simulator. A motor model for the robot was constructed, and a 

number of aspects of the evolutionary process were investigated. 

6.4.1 Target  Hardware 

The target hardware for the controller is a small humanoid robot called 

Andy(97) (see Figure 67). Cost and weight were important design 

considerations in Andy’s development. As a result Andy stands approximately 

350mm tall, and weighs around 1400g. Andy has 10 degrees of freedom in 

his legs, and each joint is powered by Hi-Tec 945 MG servos (130). The Hi-Tec 

servo specifications are listed in Table 4. Links are made from 3mm thick 

aluminium flat plate and are used to connect the plastic shafts of the servos 

directly to the next link. These connections result in a substantial amount of 

inherent flexibility. 



161 

 

 

Figure 67 – Andy Robot 

Andy can be equipped with a number of sensors, including a color camera, 

PSDs, inclinometers, gyroscopes and pressure sensors. The pressure sensors 

are permanently mounted on Andy’s feet, which are constructed from three 

metal “toes”. Each toe has two strain gauges that are used to produce a 

voltage in proportion to the applied force. 

Parameter Specification 

Operating Voltage 4.8V 

Stall Torque 11kg.cm 

Deadband Width 4 µsec 

Operating Speed 0.16 sec / 60° No load 

Operating Angle 45° / 400 µsec 
Table 4 – HiTec servo specifications 

The biped’s processing requirements are provided by an EyeBot MK3 

controller, an inexpensive but powerful platform(97). The controller is based 

EyeBot controller 
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on a 25 MHz 32 bit Motorola 68332 chip, has a LCD display, four buttons, 

parallel and serial ports, as well as 8 digital inputs and outputs and 8 

additional analog inputs.  

6.4.2 Simulation Model 

The robot was modelled using the Dynamechs(131) simulation package. This 

simulator provides a highly accurate, high order (5
th

) adaptive integration 

scheme based on a reduced coordinate method. Bodies and constraints must 

be specified in modified Denavit-Hartenberg coordinates. The collision 

system is constrained to heightfield surfaces and employs penalty based 

constraints. The package has been used in high fidelity simulations for a 

number of robots, including underwater walking robots (131). 

A schematic of the robot’s legs are illustrated in Figure 68. The robot model 

required by Dynamechs was constructed using the RobotBuilder(132)  

package. For each link, the simulator requires information including its type, 

relative position and orientation, mass, centre of mass, and inertia matrix. 

Bodies are not modelled separately to the links. 
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Figure 68 – Leg schematics and simulator model 

RobotModeler (part of the RobotBuilder package) allows the use of primitive 

shapes such as cubes and spheres to approximate the physical shape of each 

body and subsequently allows calculation of the inertia matrix for each link. 

The centre of mass is estimated using a similar method. 

To model the inherent flexibility in Andy’s toes, an extra joint was added to 

each toe. The flexibility in Andy’s toes is a result of the steel springs that are 

used for pressure sensing. The flexibility was replicated using a rotational 

joint with very small joint limits and a large friction value. Once the joint 

moves outside its limits, a spring restoring force is applied mimicking the 

memory effect of the steel spring. 

6.4.3 Genetic Algorithm 

The GA was configured using the best configurations found during the GA 

tests described previously in Chapter 5.   

To support the staged evolution, the spline controller must support a variety 

of encodings. In its simplest form, each control point is at a fixed, equal 
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distance along the spline, and only one dimension of the control point is 

encoded. For the next stage of evolution, the constraint of equidistant 

control points along the spline is removed, and each control point is then 

encoded as two values (one for each dimension – percentage walk cycle 

complete, and joint input value). Finally, to enhance the smoothness of the 

gait, the complete spline is encoded with two dimensional control points 

with tangent information. 

This encoding scheme allows a progressively larger chromosome to be 

evolved, enabling the final gait solution to be refined until an optimal gait is 

found. Encoding the control system, as outlined, provides compact 

chromosomes and enables the GA to perform staged evolution. This results 

in shorter evolution times for obtaining the final gait, and allows an early 

approximate gait to be generated in minimal time. 

One of the most complex tasks in evolving a valid gait is the selection of an 

appropriate fitness function. The fitness function must return a single 

numerical value indicating the appropriateness of a solution with respect to 

the overall goal. Since there is no straightforward performance measurement 

for a good gait, the function must be expressed as a combination of the 

desired factors. 

Reeve (104) experimented with various legged robot configurations and 

investigated a number of fitness functions for evolving neural controllers. 

Although Reeve reports that the Speed5 fitness function (average speed of 

the walker over five seconds) performs adequately, improvement on the 

performance of the algorithm can be achieved through the use of more 

complex functions. Reeve proposed five different extended fitness functions: 
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• FND – (forward not down) The average speed the walker achieves, 

minus the average distance of the center of gravity below the starting 

height. 

• DFND – (decay FND) Similar to the FND function, except it uses an 

exponential decay of the fitness over the simulation period. 

• DFNDF – (DFND or fall) As above, except a penalty is added for any 

walker whose body touches the ground. 

• DFNDFA – (DFNDF active) This function incorporates features of the 

actual control system into its evaluation of the gait. The function 

evaluates the individual neurons and ensures they are active, and are 

not stuck at an on or off value. 

• DFNDFO – (DFNDFA oscillator) As above, with the added constraints 

that both the neurons and legs oscillate. 

Ziegler and Banzhaf (100) utilized fitness functions which compared the 

generated trajectory of a gait to the desired path. The trajectory was 

specified to include an initial acceleration, then a straight walk along the 

desired path and a deceleration. The square difference of the actual walk 

from the desired was then summed over the duration of the gait and 

returned as the fitness value. In order to optimize the performance of the 

evolution algorithm, Ziegler and Banzhaf (100) introduced premature 

termination conditions to the fitness function. The premature termination 

condition ensured that the initial trajectory was within a valid range of the 

desired trajectory. Thus, if the desired trajectory were forwards movements, 

then any gait that produced backwards movement would be terminated. 

The basic fitness function implemented followed both the principles 

implemented by Reeve (104)and Ziegler and Banzhaf (100). During the initial 

phases of evolution, the fitness was evaluated purely from the distance the 

character travelled forward, minus the distance the centre of gravity 



166 

 

lowered. This is a combination of aspects Reeve’s FND and Zieglers 

premature termination conditions (100)(104). During later phases of 

evolution, the average speed at which the robot moved and the distance the 

robot wavered from the desired path were incorporated. Finally, the distance 

the robot was at termination from its desired goal was taken into 

consideration, to emulate the effect of Reeve’s DFND. 

In order to decrease the evolution time, two terminating conditions were 

added to the fitness functions. Termination would occur if the torso (main 

reference point of the robot) touched the ground (i.e. the robot fell over), or 

if the torso was significantly higher than its original start position (to 

discourage jumping). 

6.4.4 High Fidelity Simulation Gaits 

Four different gaits were evolved in the high fidelity simulation. Evolving the 

gaits for a high fidelity simulation is very computationally intensive. Evolving 

a single gait required more than one week of computing time on a cluster of 

5 AMD 2600+ PCs running Windows XP. One of these gaits is illustrated in 

Figure 69 and Figure 70. They illustrate the same evolved control program 

executing on the real and simulated Andy robot. 

Figure 69 depicts the simulated robot movements. The robot achieves 

locomotion by initially pressing downward with its left toes, causing the 

robot to tilt to its right (Figure 69.2). The robot then drags its left foot along 

the ground in front of it.  The robot then presses downwards with its right 

toes and lifts its right foot off the ground, then places it in front of it. This 

cycle repeats itself to produce a slow forwards walk. 

The figures show a relatively close mapping between the simulated robot 

and the physical robot. This is a result one would expect from a high fidelity 

simulator. One significant discrepancy between the simulated and physical 

walks is illustrated in Figure 69.4 and Figure 70.4. This difference between 
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the simulator and Andy is possibly due to worn motors, whose behaviour 

change over time. 

 
Figure 69.1 

 
Figure 69.2 

 
Figure 69.3 

 
Figure 69.4 

Figure 69 – Simulated gait 

 

 
Figure 70.1 

 
Figure 70.2 

 
Figure 70.3 

 
Figure 70.4 

Figure 70 – Andy gait 
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Although the high fidelity simulation did result in transferable walking 

patterns between the simulated robot and the physical robot, the resulting 

locomotion still performed worse than a good manually designed gait. Of the 

four gaits evolved, only two managed to operate in the real world. It is likely 

that the two gaits that failed relied on specific behaviours only found in the 

simulator that were not present in the real world.  

 

Figure 71 – Average number of steps performed by the Andy robot in the real world for 

different evolved gaits 

Figure 71 shows the average number of steps performed by each of the four 

evolved gaits. Each gait was trialled 10 times. None of the gaits managed to 

achieve reliable performance of a sustained walk, with the best performing 

evolved gait averaging 4.1 steps before falling over. 

A number of factors hampered the performance of Andy’s evolved gait, 

including discrepancies between the simulation and the real world, 

simulation errors from the foot-ground interaction, battery power, servo 

jitter, the flexibility in the plastic joints, and motor wear. These differences 

between the simulated and real behaviour of the robot could be overcome 
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by employing a more robust control strategy that takes advantage of the 

multiple simultaneous simulation paradigm. 

6.5 Gait Controller Evolved with Multiple 

Simulators 

The same problem was again solved on a different robot that would enable a 

more accurate comparison between a single simulator and the multiple 

simulator approach. 

6.5.1 Target Hardware 

The target hardware for the controller is the following model to Andy, a small 

humanoid robot called Andy 2(97) (see Figure 72). Again, cost and weight 

were important design considerations in Andy 2’s development. Unlike the 

original Andy, Andy2 is constructed with digital servos which can provide a 

positional feedback reading. Therefore, the specially designed feet that 

supported the pressure sensors on the original Andy, were no longer 

required. Andy2 stands approximately 350mm tall and weighs around 700g. 

Andy has five degrees of freedom in each leg, and each joint is powered by 

AI1001 digital servos (133). The AI1001 servo specifications are listed in Table 

5. Links are made from 3mm thick plastic connectors that directly link the 

servo motors together. As with the original Andy, these connections result in 

a substantial amount of inherent flexibility. 
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Figure 72 – Andy 2 robot 

The biped’s processing requirements are provided by an EyeBot MK3 

controller based on a 25 MHz 32 bit Motorola 68332 chip. This is the same 

controller as the original Andy robot. 

Parameter Specification 

Operating Voltage 9.5V 

Stall Torque 10kg.cm 

Operating Speed 60 rpm 

Controllable range 0° to 332° 
Table 5 – AI Servo specifications 

6.5.2 Simulation Model 

The simulation model for the robot is illustrated in Figure 73. The robot was 

modelled with the Scythe Physics Editor(134) package. Each body’s 

geometry, position, orientation and mass must be supplied and the bodies 

can then be linked together with a varied number of constraints. Like 

RobotModeler, Scythe allows the use of primitive shapes, such as cubes and 

spheres to approximate the physical shape of each body. Scythe has the 
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additional ability to combine a number of geometric shapes into a compound 

form, allowing the representation of more complex geometries. 

 

Figure 73 – Simulator model of Andy2 

6.5.3 Evolving the Gait Controller 

The controller is evolved using a steady state genetic algorithm. The GA was 

configured in a similar manner to that described in Chapter 5 and Section 6.4. 

A population of 100 individuals was evolved for 500 generations and was 

evaluated on a cluster of eight 1.8Ghz Core2 PCs. The fitness function for the 

GA takes into consideration the distance the robot travelled, its velocity, the 

orientation of its torso, the location of the feet and the height of the torso 

above the ground.  

To incorporate the evaluation across multiple simulators, a single fitness 

value is returned to an otherwise unmodified GA. The fitness value for each 

individual is normalized across each generation for each simulator. This 

ensures no individual simulator can dominate the fitness values. The total 

fitness for all individuals across each simulator is then provided to the GA as 

a singular fitness value (i.e. the multiobjective summation method). 



 

Any individual that is prematurely terminated in one simulator is then given a 

zero total fitness score, and the individual is not evaluated on any additional 

simulation systems. The Pareto

illustrated in Figure 74. Any terminated individual is given a zero fitness 

value, and otherwise is given the sum of its simulator fitness scores. The 

arrow indicates the individuals that perform best, on average, across both 

simulators. These are likely to be the most robust solutions.

Figure 74 – The fitness evaluation for multiple simulators

The generic process for multi

introduction as: 

1. Initialize a set of potential controller designs

2. Evaluate each design in 

3. Use statistical methods to assign a fitness value indicating how well 

the design solves the desired task

4. Use an evolutionary algorithm to

designs 

5. Return to Step 2, unless the task is solved

for all of the simulators

 

172 

Any individual that is prematurely terminated in one simulator is then given a 

zero total fitness score, and the individual is not evaluated on any additional 

Pareto efficiency for a system with two simulators is 

. Any terminated individual is given a zero fitness 

value, and otherwise is given the sum of its simulator fitness scores. The 

iduals that perform best, on average, across both 

simulators. These are likely to be the most robust solutions. 

 

The fitness evaluation for multiple simulators 

The generic process for multi-simulator evolution was given in the 

Initialize a set of potential controller designs 

Evaluate each design in a set of simulators 

methods to assign a fitness value indicating how well 

the design solves the desired task 

Use an evolutionary algorithm to generate a new set of controller 

Return to Step 2, unless the task is solved within a confidence interval

all of the simulators 

 

Any individual that is prematurely terminated in one simulator is then given a 

zero total fitness score, and the individual is not evaluated on any additional 

for a system with two simulators is 

. Any terminated individual is given a zero fitness 

value, and otherwise is given the sum of its simulator fitness scores. The 

iduals that perform best, on average, across both 

n in the 

methods to assign a fitness value indicating how well 

generate a new set of controller 

within a confidence interval, 



173 

 

The specific process for evolving the bipedal controller is: 

1. Initialize a set of potential controller designs 

2. For each individual, in each simulator: 

a. Evaluate the individual 

b. If the premature termination conditions are met, award this 

individual a zero fitness score and move to the next individual 

(Step 2) 

c. Store the raw fitness value for this simulator in a list 

3. Calculate the fitness value. 

a. For each simulator, normalize the raw fitness values using the 

mean and standard deviation calculated from the previous 

generation.  

b. For each individual, assign it a total fitness from the sum of the 

normalized fitness values. 

4. Use a steady-state genetic algorithm to generate a new set of 

controller designs 

5. Return to Step 2, until 500 generations is reached. 

6.5.4 Multiple Simulator Results 

To compare the efficiency of the proposed multi-simulator approach against 

a traditional approach, the walking gait for Andy2 was evolved in each 

simulator separately, as well as the multi-simulator approach. The gaits were 

then evaluated on the robot hardware. 
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Figure 75 – Highest fitness individual per generation for four separate runs of a single 

simulator 

Figure 75 depicts the raw highest fitness for the new individuals in each 

generation. Four separate evolution runs are illustrated for two different 

physics engines. The fitness score is a raw score from the fitness function and 

has not been normalized. This figure illustrates the need for the statistical 

normalization of the fitness scores. The Novodex physics engine consistently 

allowed a higher scoring individual, whereas the ODE physics engine typically 

scored the lowest. If the fitness values were summed without a 

normalization process, then the Novodex evaluated gait would have a higher 

contribution to the overall fitness of the individual. Since there is no way of 

knowing which physics engine provides the most accurate representation of 

reality, each must be weighted evenly. By normalizing the scores each 

engines average contribution will be identical. 
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Figure 76 - Highest fitness individual per generation for a multiple simulator GA with four 

simulators 

Figure 76 illustrates the normalized highest fitness for the new individuals in 

each generation. A multiple-simulator GA was run using four separate physics 

engines. The fitness values returned by this evolution is in a much closer 

range compared to the raw fitness values returned by separate simulators, as 

shown in Figure 75. The best fitness value across all four simulators rapidly 

change for each generation. This indicates that the best scoring individual in 

one generation does not come from a steady increase in fitness across each 

simulator, rather, the performance in one simulation system may be quite 

high in one generation, yet be overtaken by a new individual that performs 

far better in the next generation from a different set of simulators. This is 

better illustrated in Figure 77, which shows the summed fitness score for 

each simulator over 50 generations. 

Between generation 200 and 250 each simulator provides an increased 

fitness value. In this situation we have evolved a new gait controller that 

performs better across all the simulators. From generation 250 to 300 we see 

a divergent trend. Some individuals are performing better in one simulator, 

however they are performing worse across the other simulators. This 
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situation illustrates how one simulator can provide what seem to be good 

results, however these gaits will perform poorly in other simulators and 

hence are likely to perform poorly in the real world. 

In generation 350 there is a different divergent trend, in that three of the 

simulators have an increased fitness value for the controller, whereas one 

simulator has a decreased fitness value. In this situation there are three 

possibilities. First, that the poorly performing simulator does not have an 

accurate representation of the physical reality, and hence provides a 

different (worse) fitness value. Second, that three of the simulators share 

some common assumptions regarding their configuration (e.g. collision 

detection algorithm) and hence provide similar performance benefits from 

certain simulator optimizations. Finally, it is possible that both the first and 

second case are combined. That is, one of the simulators is employing an 

inappropriate simulation technique which is not representative of the real 

world. Without verifying the evolved control programs on the real hardware 

for each generation, there is no method for determining which simulator is 

providing the best representation of the physical reality. 

  

Figure 77 – Summed fitness score over 50 generations for the multi-simulator GA 
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Overall, this indicates there is no single ideal solution that will provide an 

increased fitness for all simulators, and that it cannot be assumed that one 

individual simulator will provide the most accurate representation of reality. 

An example of the GA’s overall performance for the multi-simulator 

configuration is given in Figure 78 and the single simulator configuration in 

Figure 79. These figures show the normalized fitness scores relative to the 

initial generation. These figures are typical of all the results generated for the 

evolution runs. The actual performance of the genetic algorithm itself is not 

influenced by introducing the multi-simulator technique. At the termination 

of the GA, all the evolved populations had converged. 

 

Figure 78 – The GA performance for the multi-simulator configuration 
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Figure 79 – The GA performance for the single simulator configuration 

Each GA run would typically evaluate between 10,000 and 15,000 individuals. 

From the collection of over 40,000 datapoints of the execution of the entire 

multi-simulator GA, a probability distribution of the individuals fitness values 

was generated. The fitness values were normalized against the initial 

population. On average, 11.6% of individuals met the termination conditions 

and were not evaluated to their full extent. The majority of individuals 

produced a relatively poor fitness value of 0.1 standard deviations higher 

from the initial generation. Only 7% of the individuals generated managed to 

score a fitness value over 1 standard deviation above the distribution in the 

original generation. 
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Figure 80 – Probability distribution of the fitness value range

From this data we can extract the additional computation load required to 

evaluate each extra simulator. Adding an additional simulat

traditional single-simulator approach increases the computation time 

required by a factor of 1.8 (N=2). Evaluating four additional simulators (N=5) 

requires approximately four and a half times the computation time of 

evaluating just a single simu

according to the time required to evaluate each simulator on the target 

hardware. For example, one simulator may be optimized for a particular 

platform and thus have a lower computation requirement than othe

simulators. Figure 81

computation time to evaluate each individual. Overall, the computation time 

for the multisimulator approach was under one fifth of the computation time 

required for the high fidelity simulator approach.
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Figure 81 – Extra computation time for evaluating additional simulators

 

6.5.4.1 Resultant Gaits 

The multi-simulator approach produced successful walking gaits for every 

evolution attempted. Every gait successfully transferred to the real robot 

hardware to produce a walking robot behaviour. This was not always the 

case with the controllers evolved with only a single simulato

Figure 82 – Robot footprints for a gait evolved with multiple simulators (left to right)
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Figure 83 – Virtual robot footprints (left to right)

Figure 82 and Figure 

one of the simulators respective

walks from left to right. Some distinctive features of this walk is the dragging 

of the left foot (in the upper markings), illustrated by the circular style twists. 

The horizontal scraping of the right foot can also

portion of the image, as well as the occasional contacts created by the edge 

of the right foot. Whilst on a coarse level there appears to be some 

correspondence between the two, it is clear, that there is not an exact match 

between them. In a high fidelity simulation it is expected that the correlation 

between the real results and the simulated results would be much higher. 

This indicates that a number of low

combined to provide an environment

real world system. This result confirms that a one

the simulator and the real world is not required to evolve a robot controller 

that can cross the reality gap.
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Virtual robot footprints (left to right) 

Figure 83 illustrate Andy2’s footprints in the real world and in 
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of the left foot (in the upper markings), illustrated by the circular style twists. 

The horizontal scraping of the right foot can also be seen clearly in the lower 

portion of the image, as well as the occasional contacts created by the edge 

of the right foot. Whilst on a coarse level there appears to be some 

correspondence between the two, it is clear, that there is not an exact match 

tween them. In a high fidelity simulation it is expected that the correlation 

between the real results and the simulated results would be much higher. 

This indicates that a number of low-fidelity simulation systems can be 

combined to provide an environment with enough variance to represent the 

real world system. This result confirms that a one-to-one mapping between 

the simulator and the real world is not required to evolve a robot controller 

that can cross the reality gap. 
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Figure 84 – Side by side comparison between real and simulated results

The paths followed by some of the other evolved gaits are illustrated in 

Figure 85. Whilst the gaits do not perform ideally, they are able to maintain 

the robot’s balance and achieve a walking motion. After 500 generations, the 

evolved controller may not have been able to evolve an ideal solution to the 

walking requirements, such as the

indicates that whilst an ideal solution may be a linear forwards walk, some of 

the simulators produce results where the robot d

walking (Figure 86). This situation is mirrored in the results from the real 

robot (Figure 85). 

Figure 85 – Different robot footprints from controllers evolved with multiple simulators.
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Figure 86 – The foot-ground contact positions for four differ

top) 

Figure 87 – Foot-ground contact points for a robot controller evolved in only one 

simulator (left to right). The transferred simulator foot

in red. 

Figure 87 illustrates the contact points generated from a robot controller 

evolved in a single target simulator (indicated in blue). The red points 

indicate the contac

transferred into another simulator. This illustrates that two simulation 

systems with an identical configuration can produce results that are vastly 

different (i.e. the robot walks in one simulator (b

other (red)). This controller was then evaluated on the real robot. The real 

robot produced contact results similar to those from the transferred 

simulator (e.g. compare 

in Figure 88, and are typical results for most of the controllers evolved in a 

single simulator.  
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Figure 88 – Robot footprints for a single simulator target evolution

Figure 89 shows the height of the torso above ground during a 10 second 

walking simulation. The target simulator maintains a steady walk with the 

torso height remaining near the

simulator the torso’s position drops at around 5 seconds, implying that the 

robot maintains a walk for a short period and then the robot falls to the 

ground. The data from the torso’s displacement from its de

(Figure 90) shows that the robot does not actually walk, but rather rocks 

from side to side on the spot before falling. This does not correspond with 

the results from the real robot’s walk, where it attempted a step and fell. 

This indicates that none of the individual simulators provided an accurate 

representation of what happened in the real world.

Figure 89 – Torso height variation for a single simulation target
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Figure 90 – Torso displacement from the desired walking position

The overall walking performance of the eight gaits evolved for the single and 

multiple simulator approaches is presented in 

more than 10 steps was deemed to have a stable walk, so data was not 

collected beyond this point. Overall only two of the controllers evolv

a single simulator managed to cross the reality gap. Of these two, one only 

sometimes managed to take a half a single step before falling and so its 

partial success is considered pure luck. The other successful gait was evolved 

with the ODE physics

Chapter 4), however it failed to produce this result with a second evolved 

gait. Although this would indicate that controllers evolved with the ODE 

simulator have a high chance of crossing the reality 

results from the high fidelity simulator (N=4) indicate that it is unlikely that it 

would reliably cross the reality gap every time. For all other simulators, none 

of them managed to cross the reality gap, and as indicated by the result

Figure 87, none would successfully transfer from one simulator to another. 

Every gait controller evolved with multiple simulators successfully 

transferred to the real robot, confirming the hypothesis that using multiple 

simulators will improve the validity of the robot simulations. Six of the eight 
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gaits provided comparable performance to a manually designed gait.  One 

gait was outperformed by the best gait from the single simulator evaluations. 

This indicates that whilst the multi-simulator approach improves the ability 

of the controller to cross the reality gap, it does not guarantee that the gait 

will provide  superior performance – just that it is more likely to work. 

 

Figure 91 - Average number of steps performed by the Andy2 robot in the real world for 

different evolved gaits 
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6.6 Bipedal Robot Control Summary 

The results from the walking robot simulation have a number of implications. 

Automatically evolved control programs that managed to successfully cross 

the reality gap demonstrate that these approaches work for mechanically 

complex robots without requiring any hardware in the loop. This was 

demonstrated for both the high fidelity approach and the multiple simulator 

approach. 

Traditional high fidelity simulations provided an acceptable solution to 

evolving gaits, however it required a highly accurate model of the robot, 

significant computational effort, and still did not always successfully cross the 

reality gap. The high fidelity simulators provided a relatively close mapping 

between the simulator and the real world. This was not the case for the 

multi-simulator approach. These results demonstrate that it is not necessary 

to have a simulator that provides an exact representation of reality. Multiple 

low fidelity simulators can be leveraged to evolve robust robot controllers 

that can cross the reality gap.  

The fitness results from the multi-simulator genetic algorithm indicate that 

there are two major classes of controller solutions: 

 1.  Controllers that perform well in a subset of simulators. This 

includes controllers that perform well in only a single simulator and 

controllers that perform well in all but one simulator. 

 2. Controllers that perform well in all simulators. 

The data from evaluating controllers evolved with a single low-fidelity 

simulator indicates that none of the individual simulators was able to 

produce a reliable representation of the real world robot. This implies that 

the first class of controllers did not include controllers that were robust 

enough to successfully cross the reality gap. 
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The controllers evolved with multiple simulators, which also performed well 

in all the simulators, managed to cross the reality gap and produce a stable 

walking gait on the real robot. This implies that the combination of the 

simulators different algorithms provides a valid model for evolving a robust 

robot controller. Furthermore, the results from these experiments indicate 

that the multiple simulator approach produces more reliable results than the 

high fidelity simulation approach. 

None of the simulators used provided a perfectly accurate model of the real 

world. This adds weight to Brook’s argument that it is not possible to 

construct a highly accurate dynamics simulator of the real world. The results 

in this chapter suggest that the dynamics problem of the reality gap can be 

overcome by leveraging multiple simulation systems in the design of a 

robot’s control system. 

  



 

7 Autonomous Underwater Vehicle 

Control Experiments

To test the applicability of the robust dynamic simulation paradigm in 

complex environments, a control system for an autonomous underwater 

vehicle was implemented for a wall following task. This scenario is depicted 

in Figure 92. 

Figure 92 – AUV wall following task

The task for the AUV is to maintain a specified distance “x” from the wall by 

controlling the orientation of the AUV, whilst mo

speed. The distance between the AUV and the wall is measured with sonar 

sensors. 

 

189 

Autonomous Underwater Vehicle 

Control Experiments 

To test the applicability of the robust dynamic simulation paradigm in 

complex environments, a control system for an autonomous underwater 

vehicle was implemented for a wall following task. This scenario is depicted 

 

AUV wall following task 

The task for the AUV is to maintain a specified distance “x” from the wall by 

controlling the orientation of the AUV, whilst moving forward at a steady 

speed. The distance between the AUV and the wall is measured with sonar 

 

Autonomous Underwater Vehicle 

To test the applicability of the robust dynamic simulation paradigm in 

complex environments, a control system for an autonomous underwater 

vehicle was implemented for a wall following task. This scenario is depicted 

The task for the AUV is to maintain a specified distance “x” from the wall by 

ving forward at a steady 

speed. The distance between the AUV and the wall is measured with sonar 



190 

 

7.1 Physical Simulation Problems for Robots in 

Fluids 

Modelling the behaviour of fluids interacting with an underwater robot poses 

a number of difficulties. Simulated fluids are deterministic chaotic systems 

(106). In an SPH simulation, if the initial position of the particles is slightly 

altered, the movement of a body through the fluid may cause the resultant 

state of the liquid to be significantly different. This is an accumulation of the 

effect of the contributions of each particle to the liquid forces and the 

particle integration effects.  These factors can be strongly influenced by a 

particular physics engine collision detection and response system. As a result, 

the collision shape of the robot moving through the liquid can have a large 

influence on the simulation state. 

SPH methods are also computationally intensive, resulting in a practical limit 

in the size of the liquid body that can be effectively simulated. This limits the 

application of SPH fluids to smaller bodies of liquid. Finally, determining the 

correct parameter settings for configuring an SPH simulation is not a trivial 

matter, and it is often difficult to create a stable simulation of the properties 

of real water. 

Grid based approaches, such as dampened shallow waves, also suffer from 

similar chaotic behaviour to particle based methods. Shallow wave 

approaches are less computationally intensive than particle based 

approaches, however they cannot simulate splashing and suffer from aliasing 

issues from having a grid applied over the geometry in the simulated 

environment (135). 
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Figure 93 – Collision boundaries for Eulerian and Lagrangian fluid representations 

Simulating fluid effects directly onto rigid bodies has the advantage of being 

computationally cheap, allowing the simulation of large bodies of water. 

Determining the correct parameters for simulating water is simpler than SPH 

based methods. This simplifies the creation of realistic and accurate 

simulations. The interaction between a fluid and other bodies cannot be 

simulated and thus the method may not provide fully accurate results when 

a body is in the vicinity of an environmental obstacle (for example, when the 

AUV is near the wall). 

Figure 93 illustrates how collision boundaries are handled in Eulerian (135) 

(e.g. Shallow Wave Equations) and Lagrangian (135) (e.g. Smoothed Particle 

Hydrodynamics) based approaches. The direct simulation approach applies 

drag and lift forces directly on the body without consideration to the fluid 

structure and does not model boundaries at all. The left side of the Figure 

depicts the aliasing problem that occurs with grid-based approaches. 

Lagrangian approaches do not have this problem as the particles move and 

respond to the object boundaries.  

Smoothed Particle Hydrodynamics simulation stability and accuracy is a 

function of the smoothing kernels used (135). Regardless of the kernel 
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function formulation incompressibility of fluids cannot be guaranteed (135).  

As a result, as an object moves through a fluid, particles can be compressed 

and result in non-realistic behaviour. 

 

Figure 94 – SPH fluid compression 

An example of this is illustrated in Figure 94. As the AUV moves towards the 

wall, particles become concentrated in front of the AUV. Once the SPH 

simulation has undergone enough subsequent iterations, the repulsion force 

is applied to the AUV and the particles will spread out. This may provide the 

simulated AUV with unrealistic fluid behaviours that an evolved controller 

may exploit, in a similar manner to the foot-ground interpenetration 

problem. 

7.1.1 Multiple Simulators 

SPH based methods can provide a model for splashing effects and the 

influence of a wall near the AUV. This makes the SPH method a suitable 

simulation paradigm for wall-following behaviours. The realistic behaviour of 

water in the SPH method is hard to control, and the chaotic behaviour of SPH 

simulations make it difficult to create an accurate, high fidelity simulation. 

This poses a similar set of issues to the simulation of the bipedal robot. First, 

that a controller evolved in only the SPH simulator may not have an accurate 
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enough representation of reality in order to cross the reality gap. Second, the 

evolutionary algorithm may find and optimize specific controllers that take 

advantage of putting the SPH liquid into a specific state. Much like the foot-

ground interpenetration problem, SPH particles may also be forced into an 

unstable interpenetration state, resulting in an unrealistic force being applied 

to the submersed body.  This would result in the controller becoming 

dependent on the unrealistic behaviour of the fluid. 

Coupling the SPH simulation with another simulation that directly calculates 

the fluid effect contributions eliminates the possibility of a controller 

becoming dependent on unrealistic fluid particle states. Furthermore, as was 

the case with the bipedal robot simulation, the extra simulator may provide 

an additional means for increasing the robustness of the resulting controller. 

7.2 AUV Hardware and Simulation Software 

The Mako AUV is a two-hull, four-thruster configuration, it measures 1.34 m 

long, 64.5 cm wide and 46 cm tall. The vehicle comprises two watertight hulls 

machined from PVC separately mounted to a supporting aluminium skeletal 

frame. Two thrusters are mounted on the port and starboard sides of the 

vehicle for longitudinal movement, while two others are mounted vertically 

on the bow and stern for depth control (107). 

 

Figure 95 – Mako AUV 
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Propulsion is provided by four modified 12V, 7A trolling motors that allow 

horizontal and vertical movement of the vehicle. The starboard and port 

motors provide both forward and reverse movement, while the stern and 

bow motors provide depth control in both downward and upward directions. 

Roll and pitch are passively controlled by the vehicle’s innate righting 

moment, though pitch can be controlled by the stern and bow motors if 

necessary. Lateral movement is not possible for the vehicle, however, this 

ability is not necessary, as the starboard and port motors allow yaw control 

which permits movement in any global horizontal direction. Overall, this 

provides the vehicle with 4DOF that can be actively controlled (107). 

The control system of the Mako is separated into two controllers; an Eyebot 

microcontroller and a mini-itx PC running Linux. The Eyebot controller runs at 

33MHz and comprises 512K of ROM, as well as 2048K of RAM. This 

controller’s primary purpose is in controlling the four thrusters, that is, 

controlling the vehicle’s movement and the AUV’s sensors. The mini PC 

comprises a Cyrix 233MHz processor, 32Mb of RAM and a 5GB hard drive. Its 

function is to provide processing power for the computationally intensive 

vision system (107).  

The sensor system is custom-made using four 200kHz Navman Depth 2100 

transducer and the LM1812 ultrasonic transceiver chip. The sensors are 

placed on the bow, port and starboard sides of the AUV and are used to 

determine the proximity of obstacles to the AUV. One sensor is pointing 

directly down for depth sensing. A low-cost Vector 2X digital magnetic 

compass module provides for yaw or heading control.  

7.2.1 SubSim: An AUV Simulator 

SubSim is a real-time submersible vehicle simulation package (136). The 

physical motion of the submarine is calculated using the Physics Abstraction 

Layer (See Chapter 3). The package provides a low level controller simulation 
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The lowest layer is the XML parser, which reads the configuration files, and 

the physics engine. The physics engine is responsible for maintaining the low 

level details on the state of the rigid bodies in the simulated environment. 

This includes properties such as a body’s mass, position, orientation, and the 

forces and torques acting on the body. The physics engine also maintains the 

collision information for the environment and determines how objects 

behave after a collision occurs. 

The Physics Abstraction Layer library lies on top of the physics engine and 

provides the interchangeable low level physics engine capabilities, as well as 

providing the higher level physics simulation attributes, such as the 

propulsion system and sensor models. Low level error modelling is also 

implemented at this layer. 

Next sits the simulation core and graphics engine. The graphics engine is 

responsible for displaying the visual 3D data to the user, as well as simulating 

the camera sensor. The simulation core performs all the application specific 

tasks and provides the interface for allowing user programs to interact with 

the virtual vehicle and the virtual world. Higher level error models and 

controller simulation is performed in this layer. 

The last layer of the SubSim package is the user interface. All the controls 

presented to the user are present at this stage. This includes information 

displays, such as sensor readings and state information, as well as the visual 

interface for interacting with the vehicles control systems.  

Finally, the user program that controls the vehicle’s actions for the simulation 

interacts with the simulation core, simulated controller, and UI to perform 

the desired tasks. This is achieved through the use of two APIs exposed by 

SubSim. The first API is the internal API, which is exposed to developers, so 

that they can encapsulate the functionality of their own controller API. The 
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second API is the RoBIOS API (65), a user friendly API that mirrors the 

functionality present on the Eyebot controller found on the Mako. 

Plug-in capabilities are available at every stage of SubSim. The physical 

simulation of the vehicle can be completely customized by interchanging the 

low-level physics engine and collision system with a different existing engine. 

The high-level physical simulation behaviour, such as the actuator and sensor 

models, can be modified via the PAL plug-ins. Error models for the simulation 

of the actuators and sensors can be performed with both the PAL plug-ins 

and the simulation core plug-ins. 

Simulation of custom controllers and associated devices can be performed by 

creating plug-ins for the simulation core. User interface plug ins are available 

to provide a graphical interface to any additional plug ins (e.g. a simulated 

controller) or to extend the functionality of the SubSim package itself. 

Providing pluggable component interfaces at each major level of SubSim’s 

operation is what makes SubSim such a versatile, flexible and extensible tool. 

7.2.2 SubSim Environment 

The terrain is an essential part of the environment as it defines the universe 

the simulation takes part in, as well as physical obstacles the AUV may 

encounter. SubSim can simulate height map environments, a data format 

typically found from geological surveys. SubSim also supports models 

produced by 3D CAD packages. This allows interaction with a complex 

simulated environment, such as oilrigs and pipelines fixed to the ocean floor. 

Whilst the terrain is in a fixed position and its properties cannot be 

influenced by an interacting object or vehicle, environmental objects such as 

buoys or pipes can be influenced by the interacting vehicles. This allows 

simulation of autonomous vehicles that can modify their environment in 

addition to underwater vehicles designed for inspection purposes. 
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Environmental effects, such as lighting conditions and water currents are also 

possible. These dynamic conditions allow for the modelling of more complex 

behaviour, e.g. introducing (ocean) currents causes the submarine to 

permanently adapt its position, poor lighting and visibility decreases image 

quality and eventually adds noise to PSD and vision sensors.  

 

Figure 97 – SubSim application screen shot 

7.3 Evolving an AUV Wall Following Controller 

7.3.1 PID Control Algorithm 

A PID controller was employed to maintain a one meter distance from the 

left wall. Initially, the sonar sensor is read to obtain the distance from the 

wall. If the sonar reading is too large then it is assumed to be a faulty reading. 

The error between the measured distance and the desired distance is then 

provided to the PID controller, and the left and right motor speeds are set 
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relative to a normal speed and clamped within a valid range. The control 

algorithm is present in pseudo code in Listing 3. 

while  (true): 
 //read sonar 
 do 
  dist = read sonar 
 while  dist>30 
 //do pid 
 speed = PID(dist - 1,dt) 
 //right motor 
 right_speed = motor_speed+speed 
 right_speed = clamp(right_speed,1,-1) 
 drive_starboard(right_speed) 
 //left motor 
 left_speed = motor_speed-speed 
 left_speed = clamp(left_speed,1,-1) 
 drive_portside(left_speed) 
  
Listing 3 – Wall following pseudo code 

7.3.2 Evolving the AUV Control System 

To evolve the control system the PID parameters were encoded into three 16 

bit fixed point values with a valid range of -1 to 1. A genetic algorithm was 

used to evolve the controller. The GA was configured to use a fitness 

proportionate selection scheme with elitism.  Only two genetic operators 

were employed, a bitwise crossover and a bitwise mutate. The crossover 

operator was selected 90% of the time and mutation the remaining 10%. A 

population of 40 individuals was evaluated over 50 generations.  

The raw fitness function was simply the summed difference between the 

desired AUV position and the measured AUV position over time. Thus, the GA 

was designed to minimize the fitness value, as the fitness measurement 

represented the cumulative error for the control system. To reduce the 

computational burden of evaluating inappropriate controllers, any AUV 

simulation that came into contact with the wall was terminated and assigned 

a poor fitness value. 
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Equation 84 – Fitness function 

To eliminate the effects of one simulation system providing consistently 

better or worse fitness values for an identical control system, the fitness 

functions were normalized relative to the initial population. 

$4�5��� =  1� v [#�$4�T − $µT¶T
·

T´7
 

Where, N is the number of simulation systems evaluated 

  rawfit is the fitness value from the ith simulation system $µT is the mean fitness value of the initial population of the ith 

simulation system 

and   ¶T is the standard deviation of the fitness of the initial population. 
Equation 85 – Fitness normalization 

A noisy fitness function (108) is not employed, since the variation found 

between simulation systems is in fact deterministic (106). A given simulation 

system started with identical parameters will always generate the exact same 

result (even if slight changes, such as the starting position of one particle of 

water may result in different AUV motion results).  

A robust fitness function (108) is also not employed, as the variation 

provided by the differences in how the dynamic simulation system evaluates 

the robot’s locomotion is hypothesized to provide enough variance to 

generate a robust control system. 

7.4 Evaluation with Multiple Simulation Systems 

To demonstrate the variance in fitness achieved by varying the simulator the 

position plot for the Mako AUV in the Ageia PhysX dynamics simulator is 

shown in Figure 98. The parameters for this PID controller were evolved for a 

single non-SPH simulator. The red plot represents the position where the 
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dynamics are calculated with SPH, and blue without. The green plot shows 

the position without SPH for the Newton Game Dynamics simulator. This plot 

illustrates the large variation possible for a AUV simulated using different 

dynamic simulation packages. The variation between packages and 

simulation paradigms appears to have a large enough variation to present a 

suitable representation of the variation between one simulator and the real 

world. This figure clearly shows that a controller evolved using only one 

simulation paradigm can completely fail to achieve its goal when transferred 

to another simulation paradigm. This mimics the effect found when 

transferring a control system evolved in a single paradigm simulator to the 

real world. 

 

Figure 98. Motion of the AUV for a controller optimized for one simulation paradigm 

AUV Path

PhysX PhysX SPH Newton
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Figure 99 – Motion of the AUV for a controller evolved with multiple simulation 

paradigms 

Figure 99 depicts a plot of the position of the AUV for a control system 

evolved with multiple simulators. The PID controller can successfully follow 

the wall in each simulation paradigm. This indicates that a controller can be 

made more robust by evolving it in a multiple paradigm simulation 

environment. Unlike the previous control systems evolved in a single 

simulator, the control system evolved using both paradigms can successfully 

follow the wall and make corrections to its course. The raw fitness functions’ 

maximum, average and minimum value for the two hydrodynamics 

simulation methods are shown in Figure 100.  

AUV Path

Non SPH SPH
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Figure 100 – Maximum, average and minimum fitness values for the evolution of a 

controller for two simulation paradigms 

7.5 Evaluation with the Mako AUV 

To evaluate the evolved AUV controllers, the AUV was placed in a pool at a 

set distance from the pool wall, away from corners and other swimmers that 

may cause noisy sonar readings. The distance from the wall was constantly 

sent out by the AUV over Bluetooth to a monitoring computer by the 

poolside.  

The Mako AUV was placed one meter from the pool wall and allowed to 

stabilize its position and sensor readings. Once stabilized, the vehicle was 

released. Figure 101 illustrates the experiments results for controllers 

evolved with a single simulator. For each controller two trials were 

conducted, and the best trial is illustrated. Unlike the walking robot 

experiments, none of the evolved controllers managed to follow the wall. 

This implies that no single fluid simulation paradigm is capable of 

satisfactorily expressing the dynamics of the real world. That is, it is more 

difficult to correctly represent fluid dynamics than rigid body dynamics. 
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The controller evolved using the direct fluid simulation method in the 

Newton Game Dynamics and the PhysX physics engines showed inconsistent 

results. For the Newton evolved version the AUV moved towards the wall, 

until the sonar sensor read faulty values. The PhysX controller moved away 

from its starting position, until it too suffered from faulty sonar readings. The 

controller evolved using the SPH simulation paradigm managed to maintain a 

distance close to the wall longer than either direct-simulation method, but 

also failed. The readings were stopped once the AUV reached the end of the 

pool. 

 

Figure 101 – Mako wall following distance readings for a single simulator evolved 

controller 

The control systems evolved in the multi-paradigm simulation was evaluated 

in five trial runs and the distance measurements returned are illustrated in 

Figure 102. During the third trial run, the Navman Depth 2100 controller 

provided some incorrect readings to the AUV due to other multipath 

reflections returning with similar amplitude to the legitimate reflection. This 

is illustrated by the break in the graph of Figure 102. Otherwise, the 

controller performs well keeping the AUV at a regular distance from the wall. 
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Some oscillations are visible at the beginning of the plot, but they are not of a 

large enough magnitude to cause the AUV to lose the wall. 

 

Figure 102 – Mako wall following distance readings for a multi-paradigm simulator 

The resulting plots in Figure 98 and Figure 99 show a strong convergence in 

behaviour over the evolution of the control system with and without the SPH 

fluid simulation.  This demonstrates that it is possible to evolve a single 

controller that provides acceptable performance within multiple simulation 

systems using different simulation paradigms.  

Figure 103 illustrates the maximum error (i.e.: worst fitness) in each 

generation. Peaks that coincide with both fluid simulation methods indicate 

controllers that performed very poorly, regardless of the simulated 

environment (e.g.: hit the wall). Peaks that do not coincide between 

simulation systems indicate controllers that performed well with one 

simulation method, but not the other.  

Both simulation methods are valid approaches for representing the motion 

of an object through a fluid, however the fitness peaks which do not coincide 

represent a set of controllers that are not robust. That is, they provide a valid 

interpretation for a single simulation method, but not both (See Figure 100). 
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Controllers which depend on particular features of one simulation method, 

rather than general features of a robot in a fluid environment, are less likely 

to transfer to the real world, as they are less tolerant towards variation in the 

environment. Since the controller evolved in the multi-simulator system was 

capable of crossing the reality gap whereas the single simulator controllers 

failed, we can postulate that the evaluation on multiple dynamics simulators 

provides enough variance to mimic the process of directly transferring a 

controller from one simulator to the real world. 

 

Figure 103. Maximum error for the worst fitness of the controller of each generation for 

two simulation paradigms 

Since the position of the physical AUV is difficult to measure, a direct 

comparison between the simulated system and the real system is performed 

from the distance to the wall from the AUV sensor readings.  The averaged 

distance from the wall for a number of trial runs for the real AUV is shown in 

Figure 104, along with the distance from the wall for the two fluid simulation 

methods. Whilst none of the simulated models directly correspond with the 

real data, the range of variation in the distance to the wall is relatively close. 

This demonstrates that the simultaneous evaluation of the control system in 
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multiple simulation systems is capable of generating a controller that can 

cross the reality gap. 

 

Figure 104. Comparison of distance sensor readings for the two simulation paradigms and 

the real AUV 

7.6 AUV Control Summary 

This experiment confirms that the multiple simulator approach is capable of 

evolving a robust control system in a simulated environment that can be 

directly transferred to a real robot.  Furthermore, it demonstrates the 

approaches success for robots operating with complex environmental 

interactions, and that it is not limited to rigid body systems.  

The fitness results from the multi-simulator genetic algorithm indicate that 
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1.  Controllers that perform well in a subset of simulators. This can be 

subdivided into: 

a. Controllers that perform well in a single simulator with a single 

fluid simulation paradigm 

b. Controllers that perform well in multiple simulators with a 

single fluid simulation paradigm 

2. Controllers that perform well in all simulators. This class consisted 

of controllers that performed well in simulators with multiple fluid 

simulation paradigms. 

From the simulation results, we can determine that controllers evolved in a 

single simulator using a single simulation paradigm will perform adequately 

in another simulator using the same simulation paradigm. However, the 

controller will likely fail in the real world, or if given a different simulation 

paradigm. Conversely, controllers evolved using multiple simulation 

paradigms would successfully cross the reality gap. The key finding is that 

variation in the simulation paradigm (e.g. SPH vs. SWE), is paramount to the 

variation in the simulators implementation details (e.g.  SPH kernels). 

The results from the evaluation on the AUV hardware indicated that 

regardless of which single simulation paradigm was chosen, and how 

accurately the paradigm modelled the fluid, the AUV would fail to transfer 

from simulation to reality. This implies that accurately representing the 

dynamics of a fluid is more difficult than representing the dynamics of a rigid 

body. Again, agreeing with Brook’s argument that it is not possible to 

construct a highly accurate dynamics simulator of the real world.  

The results from the controllers evolved across multiple simulation 

paradigms proved to be very successful. This indicates that using multiple, 

fundamentally different models for representing the simulation can provide a 
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simulation environment enabling control systems to directly transfer from a 

simulation to the real world. Furthermore, the success of the multiple 

simulator approach for this application indicates that it is a good choice for a 

problem where single simulator approaches fail. This result implies that the 

optimal simulation configuration for evolving controllers across the reality 

gap should contain fundamental differences in how the simulator operates in 

order to provide the highest probability of success. 
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8 Conclusion 

This thesis presented a new multi-simulator controller evolution paradigm 

and the design and implementation of the Physics Abstraction Layer, a 

software package which provides a uniform interface to multiple real-time 

dynamics simulators. The system was extensively benchmarked and 

demonstrated evolving a bipedal robot gait controller and evolving a wall 

following program for an autonomous underwater vehicle (AUV). The 

properties of different real-time physics engines were investigated and the 

performance of different genetic algorithms was analysed.  

8.1 Thesis Summary 

Chapter 2 discussed a number of physics simulation paradigms for rigid 

bodies, soft bodies and fluids. The implementation aspects of different 

integrators, time stepping approaches, collision detection, geometry 

representations and constraint solvers were discussed. Various paradigms for 

fluid simulations were discussed including Eulerian and Lagrangian 

approaches. Some of the key differences between the various physics 

simulation approaches were addressed. 

The Physics Abstraction Layer (PAL), designed and implemented as part of 

this thesis, was introduced in Chapter 3. It provides an abstract, generic 

interface for modelling and simulating a number of physical systems 

including robotic mechanisms. PAL was designed to be easily extensible and 

maintain a high level of compatibility between a variety of physics engines. It 

also includes a number of tools for importing data from standard CAD 

modelling packages.  The specific implementation details of the software as 

well as various sensor and actuator models were described. This software 
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enabled the extensive benchmarking and controller evolution experiments of 

the subsequent chapters. 

Chapter 4 included an in-depth benchmark of a number of aspects of modern 

physics engines. Integrator, restitution, friction, constraint solvers, stacked 

objects, and collision detection routines were extensively benchmarked for 

both computational efficiency and physical accuracy with seven different 

physics engines. The results were analysed and overall it was found that no 

single physics engine excelled in all areas in the tests. 

Evolutionary Algorithms (EAs) and control systems were introduced in 

Chapter 5. A review of Genetic Algorithms (GAs) covered fitness functions, 

selection schemes, genetic operators, chromosome encoding, staged 

evolution, premature termination and multi objective optimization. A 

simulated walking robot experiment was performed to assess the optimal 

configuration of the GA, concluding that staged evolution and early 

terminating conditions could significantly reduce the computational 

requirements for the GA. 

Finally, Chapter 6 and 7 presented some underlying problems of physically 

based simulation of two different robot control problems. A gait controller 

for a bipedal robot was evolved in three different physics simulation 

configurations. First, in a high-fidelity physics simulation system, second in a 

standard real-time physics engine and finally using multiple physics engines. 

The key problems found when simulating the robot were the foot-ground 

interaction and solving the constraint chain. 

The results indicated that controllers evolved in high-fidelity simulations 

were more likely to cross the reality gap than those that used medium and 

low-fidelity simulations. Controllers evolved using multiple low-fidelity 

simulations successfully crossed the reality gap and provided more reliable 
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performance than high-fidelity simulations, confirming the hypothesis that 

using multiple simulators provides a good representation of the reality gap. 

The results also demonstrated that controllers can perform well in one 

simulator, but perform poorly in another. 

 The experiments with the AUV reinforced the results from the bipedal robot 

experiments.  The simulation problem highlighted for this task was the 

simulation of the fluid dynamics in general, and the fluids behaviour near 

obstacles (i.e. the wall). The results found that controllers could perform well 

in multiple physics engines with no alterations, if they were employing the 

same underlying simulation paradigm. These would then fail in the real 

world. Controllers evolved with multiple fluid simulation paradigms 

successfully transferred from the simulation to the real AUV. All controllers 

evolved in a single simulator failed to transfer to reality, regardless of the 

underlying fluid model. 

8.2 Key Findings 

This thesis contains a number of key contributions that improve the validity 

of simulations of robotics mechanisms and the robust evolution of robot 

control algorithms. It was found that controllers designed in single-paradigm 

physics simulators were unlikely to work when directly transferred to the real 

world. This confirms the results of many previous researchers (1)(2)(3).   

A new design for the abstract representation for physics simulations was 

developed in this thesis. The strength of this design was demonstrated by 

applying the abstraction to 13 different physics engines, including 

representations for rigid bodies, soft bodies, fluids, material properties, 

sensors, actuators and multibody constraints. No previous design has proven 

to be as flexible or extendable. Overall the implementation of the Physics 

Abstraction Layer required over 22,000 lines of C++ code for its core, a 
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further 16,000 lines of code for graphics and file format support, plus many 

more for building, testing and benchmarking. The PAL software has been 

integrated to a number of robotics simulators and is a very significant 

contribution to the physics simulation community. 

The physics engine benchmarks in this thesis extends beyond previous 

research in that it quantitatively determines that there is no single best 

physics simulation package, commercial or non-commercial. It was found 

that all physics simulators had their advantages and disadvantages. These 

results were confirmed by the work in (94). This is a significant result, as most 

robotics simulation packages currently available employ only one single 

underlying physics simulation technology (137). Chapter 4 clearly 

demonstrated that no single physics engine could satisfactorily simulate all 

the required components for realistically representing the real world for any 

single application task. 

Given any specific robotics task, it is unlikely that one physics engine would 

provide all of the simulation requirements. For example, accurate friction 

models and accurate collision models are desirable in a robot manipulator 

gripper simulation. No single physics engine provides both of these aspects. 

This implies that engineers should test their control algorithms using more 

than one physics engine to obtain valid results. 

As a result, any system designed to evolve a control system for a robot in a 

single simulation is likely to fail due to the discrepancies between the real 

world and the simulated representation. This confirmed the problems Brooks 

foresaw (6) with transferring control algorithms from high-fidelity 

simulations to real robots. This was demonstrated in this thesis with the 

results from the high fidelity biped robot simulation – only 50% of the 

evolved controllers managed to cross the reality gap. 
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This thesis proposed a novel approach of generating a set of valid 

representations of the real world by using multiple physics simulators. This 

approach provided enough realistic variance in the physics simulation to 

enable control systems, evolved in multiple simulators, to successfully cross 

the reality gap and transfer to the real world, with no further alterations. 

Significantly, the variance introduced by the multiple simulators was 

sufficiently small that it did not impede the evolution of valid solutions as 

described by Jakobi (20). 

Controllers evolved using multiple simulators would not rely on behaviours 

found only in one simulator, eliminating the dependence on simulator 

specific behaviour. This was demonstrated in the biped robot task where 

controllers evolved with single simulators would fail in a different simulator 

and the real world – clearly indicating a dependency on one specific 

simulator’s features. This confirms the predictions from the physics engine 

benchmarks. 

The use of multiple simulators forced the evolved controller to be robust 

enough to encompass valid operation in each simulator. Thus any controller 

evolved within the multi-simulator system consequently had a much higher 

likelihood of operating successfully in the real world. This was demonstrated 

in both the Biped and AUV tasks. The Biped controller was able to provide 

more reliable performance when evolved with multiple simulators than with 

a single high fidelity simulator (more than 10 full steps for 75% of the trials, 

and successful transfers for all trials (100%), compared with an average of 3.7 

steps, and only 50% success respectively). The AUV controller was able to 

cross the reality gap when evolved with multiple simulator paradigms, and 

completely failed with a single paradigm. These factors demonstrate that the 

multiple simulator approach removes the final limitation on constructing 

evolutionary robotics systems outlined by Nofi and Floreano (7).  
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Although other approaches solve the dynamics simulation problem, the 

multiple simulator approach is the only one to do so without requiring the 

robot hardware and task-specific simulators. The multi-simulator approach 

provides advantages over the minimal simulation approach, in that the full 

robot dynamics can be simulated, and it does not require manual labelling of 

simulator attributes. This enables the evolution of lower level controllers as 

well as more complex robotics systems, such as walking robots. The multiple 

simulator approach also provides advantages over hardware-in-the-loop 

methods as it does not require a task-specific simulator, or any of the 

hardware to be available. This facilitates the evaluation of many different 

robot designs, without requiring the construction of any robot hardware - a 

key requirement for rapid prototyping and early design studies. 

The application of multiple simulator approach to walking robots illustrates 

the ability to automatically design robot control systems for mechanically 

complex robots that are difficult to control. This is a significant result, as it 

required no pre-programmed controllers, reprogramming, specific user 

modelling or hardware in the loop, unlike previous approaches.  

It was found that a number of low and mid-level fidelity simulations 

combined provided a more reliable result than a single high-fidelity 

simulator. This has strong implications for evaluation of robot designs for 

unpredictable environments (e.g. space exploration), where a number of 

valid approximations can be made without confirming the certainty of the 

target robot’s environment. 

From analysing the genetic algorithm’s performance, early-termination and 

staged evolution were found to be beneficial to finding optimal solutions for 

evolving robot controllers at lower computational cost. The raw fitness 

results indicated the need for normalizing the populations fitness in order to 
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evenly weight the simulator contributions. Failing to do this would have 

caused the GA to prefer optimization towards a single simulator. 

The evolution of the AUV control system demonstrated the applicability of 

the multiple simulator approach to systems other than rigid bodies. It 

demonstrated simulating complex environmental interactions with robotic 

systems. The AUV experiment confirmed that it is possible to create a single 

non-adaptive controller that is robust enough to operate in a number of 

alternative simulators as well as the real world. It was found that employing 

varied simulation paradigms was more beneficial for robust evolution than 

variance within a single simulation paradigm. 

The AUV experiment demonstrated instances where a control system 

performed well in one simulator, and poorly in another. This mirrors the 

results from the biped controller evolution, and again confirms the 

predictions from the physics engine benchmarks. 

 Overall it was demonstrated that relying on a single simulator for 

representing the dynamics of a robot will lead to poor transferability of 

results from an evolutionary optimization. The new multiple-simulator 

approach proved to be more reliable than single simulator approaches for 

developing robust automatically generated complex robot control programs.  

8.3 Future Work 

The Physics Abstraction Layer software provides a number of opportunities 

for further development. This ranges from implementing more interfaces to 

other physics engines, to extending the capabilities of the software itself. The 

most interesting future work would be to integrate PAL with existing robot 

simulation software. This would enable all robotics researchers to benefit 

from the work in this thesis, and confirm its results. (Note: SubSim, AutoSim, 

Gazebo, Delta3D, OpenRave and the Honda ASIMO simulator have already 
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included PAL or are working on including PAL into their simulators). 

Extensions to make PAL more available to other developers such as improved 

COLLADA support, convex decomposition, and extensions for other 

languages (C#, Python, etc.) would be beneficial to the wider community. 

Whilst the experiments provided in this thesis show a good solution to the 

problem of reliably simulating robotic mechanisms, many opportunities 

remain for improvement and confirming the results. The system could be 

demonstrated and verified on other varied robots for more tasks than 

locomotion. Ideally more experiments could be repeated with both the 

bipedal robot and the AUV, however significant computation times (>1 week) 

and the practicalities of operating an AUV limit these opportunities. 

Integrating a noisy sensor simulation framework would enable more complex 

tasks to be attempted, as well as provide a good comparison against existing 

evolutionary robotics approaches. A direct comparison against a minimal 

simulation would help highlight the differences between each approach. 

The evolutionary algorithm employed could be greatly improved. A 

multiobjective genetic algorithm would allow different aspects of the 

controller’s behaviour to be emphasized, potentially allowing the 

identification of the best performing simulator for certain tasks.  

The staged evolution procedure could be improved by providing a continuous 

alteration of the problem difficulty, rather than just discrete steps. Another 

possibility is for each simulator to contain its own GA island of individuals 

which are then interchanged in a global pool. 

The evolution task could also be expanded to investigate the design of the 

complete robot including its morphology and sensor and actuator placement. 

More complex dynamics could be considered such as soft-body systems, 

space, and aerial vehicles to expand the scope of the work. 
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PAL and the multiple-simulator evolution approach have advanced the 

validity of robot simulations in a manner beneficial to virtual prototyping and 

evolutionary robotics from walking mechanisms to underwater vehicles, 

however many challenges remain for future applications. These new 

challenges will provide opportunities for exciting new capabilities and new 

directions for PAL and the multiple-simulator evolution approach. 
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