
The Univeristy of Western Australia
School of Electrical and Electronic Engineering

GENG5512 Engineering Research Project

Final Report

Implementation of Visual SLAM for
Autonomous Shuttle Bus

Thomas Copcutt
22248715

Supervised by

Prof. Dr Thomas Bräunl

24 July 2022

Words in text: 6845

In this research a Visual SLAM solution with GPU utilisation is proposed for the nUWAy
shuttle bus to replace the currently implemented LiDAR based SLAM solution. This follows
from an underutilised GPU and issues of bottlenecking from the CPU experienced during ex-
ecution of the bus’s autonomous stack. Visual SLAM was chosen as it can make better use of
the underutilised GPU than the LiDAR SLAM solution, which runs on CPU. Such work has
promise for application in many other contexts on systems using heterogeneous CPU-GPU and
System on Chip architectures.

Proven and mature Visual SLAM algorithms exist in prior research and shows potential for
parallelisation of computation on the GPU. Adoption and modification of these implementations
ensures an efficient base solution with minimal initial computational cost. Key areas of the
SLAM algorithm are identified which have both high parallelisation potential and a significant
compute expense. These tasks will be focused on for execution on the GPU.

The success of this project will ultimately be determined by the ability to lower the load on
the CPU, as this result will successfully reduce the extent of bottlenecking of the system. It’s
unknown whether computation on the GPU in these scenarios will improve compute times so
such metrics will also be assessed.

The performance will be reported based on:

a) Known to work ORB-SLAM examples, processed on a high-powered graphics workstation.

b) Pre-recorded data of the bus in a typical environment, processed on a high-powered graphics
workstation.

c) Pre-recorded data of the bus in a typical environment, processed on the bus’s internal sys-
tems.

d) Live data from bus cameras processed on the bus’s internal systems during operation.

These datasets will be compared where possible to both an unmodified visual SLAM solution
with which processing is done on CPU, as well as the current LiDAR based SLAM solution to
determine a final feasibility of implementing the change.

1

Contents

1 Introduction 5
1.1 Background . 5

1.1.1 nUWAy Shuttle Bus . 5
1.2 Problem Statement . 6
1.3 Intended Contribution . 6

2 Literature Review 7
2.1 Simultaneous Localisation and Mapping . 7

2.1.1 FAST Corners . 8
2.1.2 Keyframe . 8
2.1.3 Covisibility . 9
2.1.4 Bundle adjustment . 9

2.2 Graphics Acceleration . 9
2.2.1 Graphics Processing in SLAM . 10

3 Design Process 11
3.1 Design Tools . 11

3.1.1 ORB-SLAM . 11
3.1.2 OpenCV . 12
3.1.3 CUDA . 12
3.1.4 ROS . 13
3.1.5 Nvidia Jetson AGX Xavier . 13
3.1.6 Graphics workstation . 13
3.1.7 Cameras . 13

3.2 Evaluation Criteria . 13
3.2.1 Computation consumption . 14
3.2.2 Pointcloud evaluation . 14
3.2.3 Time . 14

3.3 Method . 14
3.3.1 Stage 1: Pretesting . 14
3.3.2 Stage 2: Offboard trials . 15
3.3.3 Stage 3: Onboard trials . 15
3.3.4 Stage 4: Live trials . 15

3.4 Trial selection . 15
3.4.1 Oceans building trial (OC) . 15
3.4.2 Social science to mechanical building trial (SSM) 16
3.4.3 Reid to childcare building trial (CC) . 17

2

4 Final Design 18
4.1 System Architecture . 18

4.1.1 ORB extraction . 18
4.1.2 Bundle adjustment . 19
4.1.3 VideoToRosbag.py converter . 19
4.1.4 Image publisher . 19

4.2 Camera Calibration . 19
4.3 Package Installation . 19
4.4 Bandwidth limitations . 20

5 Results 22
5.1 Stage 1: Pretesting . 22

5.1.1 EuRoC V1 trial . 22
5.1.2 OC trial . 23
5.1.3 SSM trial . 23
5.1.4 CC trial . 23
5.1.5 Pretesting summary . 24

5.2 Stage 2: Offboard Testing . 24
5.2.1 OC trial . 24
5.2.2 SSM trial . 25
5.2.3 CC trial . 26
5.2.4 Timing . 26
5.2.5 Offboard testing summary . 27

5.3 Onboard Testing . 28
5.3.1 Onboard testing summary . 28

6 Discussion and Suggestions 29
6.1 Knock on effects of recording real timing data . 29
6.2 Testing on unclean systems . 29
6.3 Separation of operational and development hardware 29
6.4 Extension to full local bundle adjustment on GPU 30

7 Conclusion 31

3

Nomenclature

Table 1: Table of Nomenclature

Assignment Definition

SLAM Simultaneous Localisation and Mapping

vSLAM Visual Simultaneous Localisation and Mapping

CPU Central Processing Unit

GPU Graphics Processing Unit

ROS Robot Operating System

CAN Controller Area Network

Base system The ORB-SLAM2 implementation of vSLAM created by Mur-Artal and Tardos

Onboard computer The Jetson Xavier computer on the nUWAy shuttle bus

Offboard computer The workstation computer in the UWA Robotics Lab used for testing the design.

4

Chapter 1

Introduction

1.1 Background

The adoption of autonomous vehicles is predicted to be one of the next major transitions not
only in the automotive industry but in human society as a whole. Driving in urban off road
environments introduces many difficulties not present in on road driving. Today’s road worthy
autonomous cars rely heavily on road markings as well as accurate and detailed online road
maps in conjunction with GPS to localise themselves and stay centred in a lane [2], [3]. The
lack of predefined map or markings results in the requirement of a much higher level of mapping,
localisation and path planning. As cars level of autonomy increases a more robust solution will
be needed [4].

Currently autonomous vehicle companies are using a combination of both camera based
technology and LiDAR [5]. However, there’s great interest in the idea of foregoing LiDAR due
to the reduced cost of cameras and the expected continued development in the computer vision
field [5]. It’s expected that vehicles without LiDAR systems will be able to reach full autonomy
in the future [6].

Visual SLAM has interest from many industries including robotics, augmented reality, and
3D modelling [7], [8]. The challenge with the use of cameras, particularly monocular cameras,
is that a 3D map of the environment must be determined from a set of 2D data. A combination
of mathematical techniques will be discussed which handle this reconstruction.

1.1.1 nUWAy Shuttle Bus

Figure 1.1: The nUWAy Shuttle Bus

5

The nUWAy shuttle bus is a modified EasyMile EZ10 bus with an array of perception sensors
to aid in autonomous driving. The bus currently runs using two computers. The first is an
industrial PC which was fitted by the original manufacturer and largely serves to interface with
the CAN bus and sensors. An additional Nvidia Jetson AGX Xavier was added to improve the
processing power of the bus overall. It is planned that the bus will make routine trips along a
main thoroughfare between the UWA Reid Library and the UWA business school. The bus will
stop at these locations and allow students to embark and disembark to avoid the long walking
journey between these two popular locations. It is now in the final stages before it can be run
with the public, however there are still many areas of improvement that can be made once the
bus is in operation.

1.2 Problem Statement

The nUWAy shuttle bus currently uses a LiDAR based SLAM implemented using SLAM Tool-
box on ROS2. This method largely uses CPU for computation and competes with resources
against many other systems run on the bus. As a result, the SLAM process was observed to
not be able to operate in conjunction with the full autonomous stack. Additionally, new EZ10
shuttle buses may be aquired without front and back facing velodyne LiDAR units which may
impact the current LiDAR SLAM solution. It has been proposed that a visual based SLAM
implementation could make better use of the currently underutilised graphics processing unit
on board one of the buses PC’s and lower CPU load. This would ultimately allow for operation
of SLAM in a lifelong mapping mode which has benefits mentioned in Section 2.1 for the long
term successful operation in the dynamic campus environment.

1.3 Intended Contribution

This project intends to improve the overall performance of the bus by implementing tasks
which can run on the GPU. Assessment of the feasibility of vSLAM for use on the nUWAy
shuttle bus will be conducted and its performance will be compared to the existing SLAM
Toolbox implementation both from a reliability and computational performance perspective.
The SLAM system should still provide accurate results, be equally responsive and use less CPU
than the existing method.

6

Chapter 2

Literature Review

2.1 Simultaneous Localisation and Mapping

Figure 2.1: RViz display of the nUWAy shuttle bus on a map created using a SLAM algorithm

SLAM is a technique which uses current and past perception sensor data in new environments
to position itself and its surroundings in a self generated map. The mapping and localisation
elements are co-dependent, and so probabilistic methods are used to update the position and
orientation as the map is generated and adjusted.

In robotics, SLAM is primarily a solution to navigate accurately and account for the un-
certainty produced by sensors and motors. Without these errors a robot could successfully
navigate in a dead reckoning fashion.

Many algorithms exist with varying speed, robustness and use cases. Choosing a SLAM
implementation suitable to the available sensors and the environment a robot will be deployed
in is key to the robot being able to accurately generate a map and localise within it.

While LiDAR SLAM relies on distinct 3D object shapes to operate, visual SLAM relies on
identifiable visual features. This gives each method a natural edge in different circumstances.

For operation in a previously mapped environment most SLAM implementations can be run
in a choice of two modes, lifelong mapping or localisation only. Lifelong mapping mode allows for
the system to continually update its map and encorporate changes to the environment as they
occur which is beneficial for relocalisation in dynamic environments. Localisation only mode
foregos this ability to reduce the computation load when navigating in a known environment,

7

but risks the long term accuracy of the map if the real environment changes.

2.1.1 FAST Corners

Figure 2.2: FAST Corner detection showing consecutive lighter pixels around a Bresenham
circle [9]

FAST Corners is the corner detection technique used by ORB-SLAM. This technique is
catered towards real-time applications like SLAM due to it’s low computational requirement
in comparison to other corner detection algorithms [9]. It also better recognises slightly softer
corners such as those which would be obtained from camera data as opposed to pixel perfect
computer generated imagery [10].

The technique works by comparing the 16 pixels in a Bresenham circle of radius 3 centred
around a point of interest shown in Figure 2.2. If a number n of consecutive pixels are sufficiently
brighter or darker than the point of interest then the point is considered a corner. For additional
speed, the pixels are not compared consecutively but across diagonals to sooner discern whether
a consecutive n would not be possible. Further machine learning optimisation has also been
made to the FAST algorithm.

2.1.2 Keyframe

Keyframes are a subset of the image frames received from the camera. Keyframes are selected
by a set of criteria which attempts to filter out at an early stage any frames which will not
provide useful data for the SLAM result. Formally, the definition from Mur-Artal, Montiel and
Tardós is

Criterion 1 Ensures keyframes are created frequently enough to be able to re-localise effect-
ively [11].

Criterion 2 Maximises the compute resources of the mapping thread and prevents the pro-
cessing of stale data [11].

Criterion 3 Ensures a frame has enough visual features to provide useful information. This
will also filter frames which are out of focus or motion blurred [11].

Criterion 4 Ensures each keyframe is “distinct” and will provide new information from other
existing keyframes to minimise superfluous data [11].

[10]

8

2.1.3 Covisibility

Covisibility relates to a mapping of all points which can be viewed in the same frame as a point
of interest. Use of a covisibility graph allows for the tracking thread to focus on a local area
with reduced, vastly reducing computation time for localisation [11], [12].

Figure 2.3: Creation of covisiblity graph from keyframe data [13]

The first image shows a set of six keyframes indicated by the cameras, and the keypoints
which they can view. The numbers next to each point indicates how many keyframes they are
visible in. Points visible in more keyframes are considered to have higher visibility [13].

The second image shows a reduced set of points which are visible in a minimum of two
keyframes. This reduces the computation time as points with low visibility will have a lower
probability of appearing in newer queried frames [12], [13].

The third image shows that despite two points being physically close they may not be
observable together in any keyframe [13].

The fourth image shows in red all the points that are co-visible to the point in green, and
the three keyframes associated with the green point [13].

2.1.4 Bundle adjustment

Bundle adjustment is a method of minimising the reprojection error between the real distance
value and the reconstructed value when a 3D landscape is reconstructed from 2D image data
[14]. It therefore becomes a sum of squares problem formalised in Equation (2.1)

min
aj ,bi

n∑
i=1

m∑
j=1

vijd (Q (aj ,bi) ,xij)
2 (2.1)

The 3D points shown as X1 through X4 in Figure 2.4 are estimated as 3D map points by the
bundle adjustment algorithm, through observations u in the keyframes C1 through C3. The
estimated 3D X and C points are adjusted to minimise the error between the projection points
u and the reprojection points u′.

2.2 Graphics Acceleration

Most modern computer systems have two main processing units, the Central Processing Unit
(CPU) and a Graphics Processing Unit (GPU).

The CPU is optimised for sequential computation with a small number of extremely fast
cores and larger caching and control flow allocation as shown in Figure 2.5. This means they can
quickly execute chains of instructions where inputs may be reliant on previous computations.

GPU’s have many more cores than a standard CPU. This means if a task can be broken
into smaller independent tasks, they can be solved concurrently using the large number of cores
to save time. Computer vision is an area which is easy to parallelise and see large performance

9

Figure 2.4: A visual display of 3D points captured in mulitple 2D frames

Figure 2.5: A simple diagram showing the physical differences between a CPU and GPU. [15]

increases utilising a GPU as similar subtasks are often run on large sets of pixels or points to
convert the image into useful information [16].

Generally for software with GPU utilisation, the overall system structure will be run on the
CPU with key computationally intensive and parallelisable blocks of the logic being computed
on the GPU. Due to the CPU and GPU having separate memory storage this introduces some
overheads to copy memory between these storages before and after GPU computation.

Pulli, Baksheev, Kornyakov et al. [16] shows performance increases of up to 700 % using a
GPU for stereo vision applications which is similar to the time offset images a monocular visual
SLAM implementation will be comparing.

2.2.1 Graphics Processing in SLAM

In vSLAM the tracking thread is the prioritised thread to boost performance due to its time
requirement. It’s been shown by Aldegheri, Bombieri, Bloisi et al. [17] that CUDA accelerated
OpenCV can provide performance increases in ORB-SLAM on a NVIDIA Jetson. Additionally,
parallelised bundle adjustment has been tested in [18] and [19] with considerable performance
increases. In contrast, filtering based methods require an essential stage of resampling [20]
which require a sum of importance weights [21]. This results in filtering based methods not
being able to be parallelised as efficiently and less capable of GPU utilisation.

10

Chapter 3

Design Process

3.1 Design Tools

3.1.1 ORB-SLAM

ORB-SLAM is a visual SLAM solution which can be used with monocular, stereo and RGB-D
cameras. This will be considered the base system in the report. The basis of ORB-SLAM2
lies in Bundle Adjustment. However, this is a computationally expensive task and cannot be
performed for every frame that the camera produces. Because of this, keyframes, discussed
in 2.1.2 are utilised, and the SLAM problem is split into three separate asynchronous tasks
of tracking, mapping and loop closing [11] as shown in Figure 3.1. This allows the tracking
thread to update localisation at an acceptable rate while bundle adjustment can be handled
in mapping. It has been shown in [22] that keyframe based analysis presents better results for
similar computational cost when compared to filtering methods for visual SLAM [11].

Figure 3.1: A flowchart of the ORB-SLAM2 process [23]

Tracking

The tracking process takes place every camera frame. It firstly extracts features using FAST
corners and estimates a pose comparing it to the previous frame [11]. If this estimation fails,
the tracking attempts to re-localise using the global map [11]. This estimate is then made more

11

accurate using a local map before a decision is made as to whether the frame should be used as
a keyframe [11].

Being able to run this task every frame makes the localisation as robust and agile as possible.

Mapping

Once it’s decided a frame should be added to the keyframes, the covisibility graph explained
in 2.1.3 is updated. Map points are culled if they are not visible in the first three keyframes
since creation or they no longer appear in enough keyframes due to the local keyframe culling
process [11]. New map points are then added from the new keyframe and bundle adjustment
is applied. Finally, the aforementioned local keyframe culling removes keyframes considered
redundant [11].

Loop closure

The keyframe is compared with all its covisible keyframes through a bag of words model to select
frames similar to the current keyframe without being already connected [11]. Transformations
accumulated through the error around the loop including translation, rotation and scale are
accounted for [11]. If a keyframe is found to be similar enough the covisibility graph is adjusted
to essentially merge the two frames into one. Then correction and optimisation are done on
previous keyframes [11].

3.1.2 OpenCV

Figure 3.2: OpenCV implementation of FAST Corner detection [24]

OpenCV is an open source software library with over 2500 algorithms, providing a compre-
hensive set of tools for computer vision [25]. It provides a stable framework for real time vision
applications. With its large and active community, as well as compatibility for many languages
and platforms, it can be expected OpenCV will be supported well into the future [25]. Open CV
tools will be used for various image conversions and processing within the design. Beyond the
standard OpenCV libraries is the OpenCV contrib modules, a set of extra in-development lib-
raries which includes libraries which utilise CUDA discussed in Subsection 3.1.3. These libraries
will provide vital functionality to the ORB-SLAM2 system for processing input images.

3.1.3 CUDA

CUDA is a general purpose processing platform for NVIDIA GPU’s. It’s this toolkit which
converts tasks into parallel instructions the GPU can understand and execute, as well as ports

12

the results back to the CPU. Despite being restricted to use on NVIDIA processors, it has
better performance than competitors such as OpenCL due to being designed for its specific
architecture [26].

CUDA is a general purpose processing platform for NVIDIA GPU’s. It’s this toolkit which
extends the C/C++ language to handle compilation and running on both host (CPU) and
device (GPU). CUDA provides functions to handle memory allocation on the GPU memory
space, calling of a device executed kernel task with thread management and asynchronous
computation, and various libraries to assist with development of device code. CUDA abstracts
device code away from the hardware level in a similar way that C++ does, allowing development
for any Nvidia hardware without the need to alter code for a different target device. This is
beneficial for the split offboard and onboard testing scheme proposed in Section 3.3.

3.1.4 ROS

ROS provides an open-source framework that allows various robotics processes to pass inform-
ation between one another through a graph network. It’s language and platform independence
and maintained API’s have resulted in adoption from many third party package implementa-
tions which are largely open source and available for use. ROS focuses on processes (known as
nodes) being largely independent of one another and being coupled at runtime through the use
of messages and topics which form the graph network.

3.1.5 Nvidia Jetson AGX Xavier

The Jetson Xavier computer is a development board with an ARM CPU architecture and
dedicated Nvidia on board GPU with CUDA support. The computer currently runs an Ubuntu
20.04 operating system and runs much of the buses current autonomous implementation. This
will be known as the onboard computer in the report.

3.1.6 Graphics workstation

The graphics workstation is an offboard system and will be the system used for initial develop-
ment and testing. It’s system architecture differs from the Xavier computer as it has an Intel
x86 CPU and two Nvidia Titan X graphics cards. Key compatibility criteria are met however
as these graphics cards have CUDA support which will allow testing of the design utilising
graphics processing. Due to CUDA’s hardware abstraction philosophy the implementation of
the design will not differ despite these differences in physical hardware. This computer will be
referred to as the offboard computer in the report.

3.1.7 Cameras

Two camera solutions were considered for this project, firstly being the Pointgrey GS3-PGE-
23S6M-C monochrome cameras already installed in the bus, and secondly being a colour variant
also produced by Pointgrey. Ultimately for this project images will be converted to greyscale
for ORB extraction so the benefits of colour images were dismissed in favour of the existing
architecture. The cameras communicate over the network to a computer with the Pointgrey
Spinnaker drivers installed.

3.2 Evaluation Criteria

The evaluation criteria were designed to link the testing conducted to the aims of the project.
The success of this project will ultimately be determined by the ability to lower the load on

13

the CPU, as this result will successfully reduce the extent of bottlenecking of the system. Fur-
thermore, the design must produce comparable or improved mapping and localisation accuracy.
Finally, any performance improvements generated from the design over the base ORB-SLAM2
system wish to be highlighted. With these requirements in mind the following evaluation criteria
were devised.

3.2.1 Computation consumption

Monitoring and logging of process ID’s during testing will reveal the load on both CPU and
GPU due to the design. This will be accomplished by recording the output of the top and
nvidia-smi commands for CPU and GPU usage respectively at 1 s intervals. The CPU data is
represented as a percentage usage of a single core. As the CPU is comprised of multiple cores
this can exceed 100 %.

3.2.2 Pointcloud evaluation

Pointclouds between base system and the design will be compared qualitatively to ensure that
the design produces a pointcloud map that is of equal or better quality then the base system.
These pointclouds will be visualised in RViz software and manually analysed.

3.2.3 Time

The computation time of the affected sub processes in the ORB-SLAM2 algorithm will be
measured and compared between CPU and GPU executed variants The time taken for the
bundle adjustment and FAST corners sections of the ORB-SLAM2 algorithm to compute will
be measured using the chrono library will measure the total real time taken for computation to
complete, and the output will be written to a file for analysis. While improvements to the timing
of the algorithm at this point is not the primary objective of the project, the metric is important
in ensuring the real time operation of the algorithm for its use as a SLAM implementation on
the bus.

3.3 Method

Testing will follow a structured, stage based approach, with defined gateway criteria to warrant
progression to the next stage. Trialling will be tracked in a spreadsheet, with results files named
in adherence to a strict convention to ensure integrity of the data.

The design will initially be installed, debugged and tested on the offboard computer. This
provides a more stable and controllable environment, free from the rest of the code run on the
bus which may cause unpredictable adversities during development. Additionally, its remote
availability allows for uninterrupted access which will be beneficial throughout the early phases
of the project.

The end goal is to have the design installed on the onboard Jetson computer. This would
go further to proving the projects viability but comes with some constraints involved with the
handling of the other critical live code on this system.

3.3.1 Stage 1: Pretesting

The first stage will consist of running a set of tests from publicly available odometry benchmarks.
These large datasets of high quality test scenarios are aimed to encompass the large majority
of typical scenarios and should provide a rigorous criterion which can easily be compared to the
results of the base ORB-SLAM2 system.

14

The EuRoC dataset [27] will be used to test the installation on a scenario with which the
base system is known to work from previous studies [1]. This test will confirm that the system
is fully installed and operational, and successfully produces a pointcloud output from the given
input. This dataset was selected due to the provision of direct rosbag download of the data,
further reducing sources of error from external conversion means. This dataset also provides
the camera calibration values required to correct for the images intrinsic distortions.

Pretesting will then be run on the three campus trials outlined in Section 3.4 in order to
assure that the system can be successfully applied in the scenarios the nUWAy shuttle bus will
be faced with.

In order to complete this stage of testing and move to stage 2, the system must be fully
operational, accepting incoming image data and producing a viewable pointcloud output which
is representative of each test environment.

3.3.2 Stage 2: Offboard trials

The offboard trials will test the base ORB-SLAM2 implementation against the design on a
graphics workstation. Timing and computation consumption data will be recorded for analysis,
and the pointclouds produced by these trials will be compared to affirm that the design can
produce results of equal quality to the base system.

In order to complete this stage of testing and move to stage 3, the system must display
comparable or improved pointcloud output to the pretesting results and display a reduced CPU
load in comparison to the base system.

3.3.3 Stage 3: Onboard trials

Onboard trials will run on the nUWAy shuttle buses Jetson Xavier computer and test the
performance and operability of the base system and the design. This will ultimately show the
percentage reduction in CPU demand in the final target computing environment. Testing will
progress to stage 4 following the design demonstrating its ability to run on the bus hardware
at an acceptable CPU demand.

3.3.4 Stage 4: Live trials

The final stage of trials will test the design using a live video stream from the buses onboard
cameras while in motion, with other elements of the autonomous stack running. This will gauge
real performance and reliability on the bus in operation and be the basis of comparison to the
existing solution.

3.4 Trial selection

The campus environment was considered to consist of areas of urban environment, including
buildings, posts and pathways, and more organic environments, consisting mostly of vegetation.
For the SLAM algorithm to be adequate for use on campus it must be able to successfully
maintain its mapping ability in both of these environments. Each trial was assigned a short
form letter code denoted in brackets which will be used to identify the trials throughout the
report.

3.4.1 Oceans building trial (OC)

The first trial will take place on a stretch of road near the UWA Oceans Institute shown in
Figure 3.3. This area with wide, unobstructed road and prominent buildings on both sides
provides an outdoor urban environment scenario. It’s expected that the algorithm will be able
to handle this scenario well due to the geometric and static corners present.

15

Figure 3.3: Path of oceans building trial

3.4.2 Social science to mechanical building trial (SSM)

The social science building provides an area with an urban environment on one side of the
thoroughfare and an open area on the other side. The social science area is one identified to
be of high importance. It is both an area where we have seen the most reliable localisation on
the buses current implementation and an area which is used for the buses operational drives.
The route then takes a 90 degree turn and heads toward the campuses mechanical engineering
building. This tests a section of route with predominantly vegetation and a lack of defined
corners provided from buildings. The route plan can be seen in Figure 3.4

Figure 3.4: Path of social science to mechanical building trial

16

3.4.3 Reid to childcare building trial (CC)

Finally, a longer testing route from Reid library to the childcare centre was recorded shown by
Figure 3.5. This route forms the majority of the route intended for the buses operational drives
to transport students from the Reid library to the UWA business school. It provides a mixture
of urban and organic environments and will test the ability of the algorithm over a longer
distance. In the current bus implementation, mapping and localisation is still not something
that can be considered completely robust over this long distance. For this reason, promising
results in this trial will be a key driver to warrant replacement of the current implementation.

Figure 3.5: Path of Reid library to childcare building trial

17

Chapter 4

Final Design

The final design combines the techniques of CUDA ORB extraction with bundle adjustment
optimisation also using CUDA, and runs as a node on the ROS system. By combining these
techniques it will achieve the highest proportion of the ORB-SLAM2 algorithm run on GPU
publicly available. Supporting framework was designed to allow this system to function on the
nUWAy shuttle bus.

4.1 System Architecture

Figure 4.1 displays the full ROS system architecture including the image acquisition methods
for both testing and execution and the sub components with CUDA acceleration displayed in
green.

Figure 4.1: Modified system architecture diagram

4.1.1 ORB extraction

The design will consist of the works of Nguyen [28] utilising OpenCV with CUDA acceleration
techniques to improve the speed of FAST corner detection and ORB extraction in the tracking
thread of the ORB-SLAM2 algorithm. Due to the ORB extraction process being executed in
the tracking thread, it is therefore run at a high frequency and therefore is a key process to be
implemented on the GPU in order to reduce usage on the CPU.

18

4.1.2 Bundle adjustment

The modified bundle adjustment stage removes the usage of the g2o sparse optimiser class and
replaces it with the CUDA bundle adjustment class from the works of Adaskit-Team [29]. This
class is designed to function in a similar way to the g2o sparse optimiser such that the process
flow through addition of keyframe and mappoint data to the optimiser before the optimisation
algorithm is the same, with familiar naming convention. This data is however eventually being
copied across to the graphics card memory where the optimisation algorithm will run.

Attempts were made to further extend this process fully through to the local bundle ad-
justment algorithm with only limited success. Ultimately a product which computes the full
process on the GPU was not able to be delivered, and further development would be required
to complete this.

4.1.3 VideoToRosbag.py converter

For ease of acquisition and reproducibility of the tests, recorded footage on the bus was done
within the SpinView camera driver software and saved as a video file. In order to convert
this file into a image stream on a ROS topic to be read in by the design, a python script was
made utilising OpenCV to create a bagfile from a video file. This bag file can then be replayed
multiple times to conduct trials and testing. The produced bagfile would publish the Image
messages to the same topic as the cameras on the bus, essentially mimicking their behaviour to
the eye of the ROS system. This method allowed easier viewing of recorded data immediately
after recording to ensure its of good quality for trial purposes over directly recording a rosbag
on the bus.

4.1.4 Image publisher

The image publisher acts as an interface between the blackfly camera drivers and ROS. It creates
a node in the ROS environment and begins querying the camera for images before converting
them into a ROS message and publishing them to a topic. This topic is either directly subscribed
to by the design or is remapped using an image transport node such that the image data gets
delivered to the SLAM system.

4.2 Camera Calibration

Each lens has unique optical characteristics which are imperfect. These create subtle distortions
in the image which must be corrected before processing which predominantly include barrel or
pincushion distortion, an effective change of magnification dependent on the distance from the
centre of the lens focus point. These distortions can be corrected with with a set of parameters
obtained through a calibration process using a checkerboard pattern shown in Figure 4.2. This
process was carried out using the ROS image pipeline package. The final calibration results
used in testing are as in Figure 4.1

4.3 Package Installation

Throughout the installation and testing process, issues were experienced with competing ver-
sions of OpenCV, Eigen, Python and importantly CUDA. These issues are discussed further
in Section 6.2. Ultimately the final versions of these packages that were found to work in
conjunction with each other and used in testing are shown in Table 4.2

It was revealed that the installation of the CUDA software on the Jetson Xavier was different
to that on desktop PC’s and required a complete system wipe which was deemed unfeasible due
to the significant impact to the buses operability it would have. Despite this, ROS 1 was

19

Figure 4.2: Calibration process using a checkerboard pattern

Table 4.1: Camera calibration parameters

Parameter Result

fx 896.893463

fy 886.578382

cx 908.242571

cy 503.797799

k1 -0.013504

k2 -0.002980

p1 -0.008882

p2 -0.016219

k3 0

Table 4.2: Package versions for workstation

Package Name Version

CUDA 11.6

CUDA Samples 11.6

Nvidia Driver 515.48.07

Eigen 3.4.0

OpenCV 4.5.5

OpenCV contrib 4.5.5

Pangolin 0.8

successfully reinstalled onto the Jetson Xavier and following this the base system was installed
to test the operation of the ORB-SLAM2 implementation on the final hardware.

Both computers had severe storage space limitations on their respective primary drives. Due
to this, some packages had to be installed on secondary drives with the utilisation of symlinks
to meet the space requirements of the system and its dependent packages. This process was
identified as a risk for long term reliability of the system as it creates additional vulnerabilities
to files being moved and no longer accessible.

4.4 Bandwidth limitations

During development of the image publisher it was found that the image stream from the camera
required a very large amount of bandwidth and was choking the buses network when image

20

acquisition was in progress at high frame rates and resolutions. This then caused issues for
other devices trying to communicate with each other which rendered the bus unreliable to drive
autonomously.

An immediate fix was pursued to rectify this issue by lowering the frame rate and resolution
of images acquired from the camera. This proved effective, however was not desirable as a long
term solution as both these compromises cause issues for the design and any future camera based
processing projects. A lowered resolution results in poorer quality ORB extraction leading to
longer initialising times and a higher chance to lose tracking while in motion. A lowered frame
rate contradicts the aim of this project to improve to performance of the tracking thread and
achieve processing of a higher frame rate in this thread.

To create a more practical long term solution the cameras were tested on a separate network,
by utilising the USB-C port on the Jetson Xavier computer and a USB-C to Ethernet adapter.
This allowed a direct and isolated secondary network such that the cameras could stream images
at higher resolution and frame rates without impacting the main network on the bus. After
assignment of IP addresses and adjustment of IP settings this technique ultimately saw success.
In its current form this will only allow the use of a single camera, which is adequate for the
purposes of this project, but a network switch can be implemented to solve this problem and
run both cameras simultaneously if funding is acquired for its purchase.

Figure 4.3: USB-C Ethernet converter utilised as a second network connection for the Jetson
Xavier direct to Pointgrey camera

21

Chapter 5

Results

5.1 Stage 1: Pretesting

Pretesting was conducted firstly on EuRoC dataset examples followed by the three campus
tests. This will confirm proper operation and suitability of the ORB-SLAM2 algorithm in the
UWA campus environment.

5.1.1 EuRoC V1 trial

(a) Successful ORB extraction

(b) Generated Pointcloud

Figure 5.1: Pretesting run on the EuRoC V1 dataset

The key purpose of the EuRoC test was to initially test the ORB-SLAM2 algorithm on a
dataset it was known to be effective on, in order to confirm that the installation process was
complete and that there is full operation of the system. From the display window shown in
Figure 5.1a we can see the image stream going through to the system, as well as display of the
extracted ORB keypoints and other information about the current state of the system. It also
confirms that we can retrieve a generated pointcloud and display this in the RViz software as
shown in Figure 5.1b. This confirms correct operation of the ORB-SLAM2 system and allow
progression to verification of its applicability to the campus’s environment.

22

(a) Generated Pointcloud

(b) Overlaid pointcloud on raw trial image

Figure 5.2: Pretesting run on the oceans trial

5.1.2 OC trial

The system quickly initialised and produced a high quality point cloud, with the prominent
building faces to each side of the camera easily distinguishable. This is shown in Figure 5.2a,
with the same pointcloud from a differing perspective overlaid on a frame in Figure 5.2b. The
foreground buildings on either side are detected and the system performed particularly accurate
point placement of the background building. Slight differences between the pointcloud and
underlaid image can be explained due to the underlying image not being adjusted for distortion
and perspective difference between the camera and RViz.

5.1.3 SSM trial

Figure 5.3: Annotated RViz output of SSM trial testing

The system dealt well with the challenges of the SSM trial, successfully initialising despite a
lack of considerable geometry on one side of the camera. It also adequately displayed the right
angle corner taken and continued to be able to map and localise in a more vegetation based
environment. These characteristics are captured in the annotation in Figure 5.3.

5.1.4 CC trial

The system continued to produce pleasing results even in a longer length trial with key land-
marks on the journey adequately depictable from the RViz pointcloud output. Figure 5.4

23

Figure 5.4: Annotated RViz output of CC trial testing

displays some of the various buildings visible from the pointcloud. The pointcloud maintains
it’s expected straight line tracking all the way through to the end of the path.

5.1.5 Pretesting summary

These situation based results give confidence to proceed with the GPU integration and testing.
All three campus trials displayed results that indicated ORB-SLAM2 as a suitable SLAM solu-
tion for the campus environment. This meets the gateway criteria outlined in 3.3.1 to continue
into GPU development and offboard testing.

5.2 Stage 2: Offboard Testing

The offboard testing is designed to observe the benefit of the CUDA integrated processes of the
ORB-SLAM system, reducing the CPU usage as well as time benefits. This testing will provide
important indicative data of these benefits on real campus situations which can be used to make
the case for implementation on the operational Xavier computer.

5.2.1 OC trial

(a) CPU usage of offboard OC trial (b) CPU usage of offboard OC trial during SLAM

Figure 5.5: Offboard CPU usage of the oceans trial

In the oceans building test we see in Figure 5.5a that the design trial initialised significantly
faster indicated by the earlier rise in CPU usage as the full computational process of the system
becomes operational. This is also reflected in the pointcloud in Figure 5.10, which displays

24

Figure 5.6: Pointcloud output of design run on OC trial

points in an earlier period of the trial than the CPU test shown in Figure 5.2a. The period
where both systems are successfully mapping is shown in 5.5b. The displayed average values
clearly show the reduction in the CPU usage by the design over the base ORB-SLAM2 system.
This was calculated to be a 8.44 % raw reduction resulting in a 3.60 % decrease in CPU usage.

5.2.2 SSM trial

(a) CPU usage of offboard SSM trial (b) CPU usage of offboard SSM trial during SLAM

Figure 5.7: Offboard CPU usage of the social science to mechanical building trial

Figure 5.8: Pointcloud output of design run on SSM trial

The results of the social science to mechanical building trial were far more correlated to the
base system. There is no additional delay initialising that was seen in Section 5.2.1 and the
CPU usage is far closer to each other at 2.06 % raw difference resulting in 0.91 % increase. The

25

slightly less CPU usage in the base system is suspected to be caused by an unexplained dip in
usage through the middle of the test seen in Figure 5.7, which is not echoed in the test of the
design. Once again pointcloud output is highly comparable, its output in Figure 5.10 having
the same key characteristics outlined in Section 5.1.3.

5.2.3 CC trial

(a) CPU usage of offboard CC trial (b) CPU usage of offboard CC trial during SLAM

Figure 5.9: Offboard CPU usage of the Reid to childcare building trial

Figure 5.10: Pointcloud output of design run on CC trial

Show characteristics similar to those found in Section 5.2.1 with faster initialisation by the
design and a lower CPU usage at 6.22 % raw difference or 2.77 % decrease. The two dips in
CPU usage at the 200 and 325 second marks were identified as being due to two emergency
stop procedures taken during the route. Using this extended journey and observing the flat to
decreasing trend of the CPU usage in 5.13c we can determine that the CPU usage from the
system will not increase as journey length and map size increases and hence these factors should
not be a concern when operating on the bus.

5.2.4 Timing

The timing data will assess the performance value of the design over the base ORB-SLAM2
system, isolating the ORB extraction and bundle adjustment algorithms which have been mod-
ified.

Its expected that ORB extraction time is mostly reliant on the number of features to extract
per frame and therefore proportional to the number of features parameter set. As this parameter
was kept constant throughout all tests we don’t expect drastic change in the ORB extraction
time between the different trials. Tests on the design shown in Figure 5.11 reflect this theory
with averages only ranging by 9 % while the base system tests show a larger variation of up to

26

Figure 5.11: ORB Extraction timing data for base system and design across trials

27 %. We see a reduction in the compute time of the ORB Extraction algorithm by a factor of
about 10x across the three trials of the design which is an impressive speed difference compared
to the base system.

Figure 5.12: Bundle Adjustment timing data for base system and design across trials

Timing results of bundle adjustment shown in Figure 5.12 display substantial reduction by
40 % to 45 % in the SSM and CC trials and a marginal reduction in the OC trial. Variation
in these trials is much more expected as the bundle adjustment calculations change dependent
on the unique map point and keyframe locations in each trial. This indicates that the design,
with partial utilisation of the GPU, is able to reduce the time spent on the bundle adjustment
algorithm. Further discussion is posed in 6.1.

5.2.5 Offboard testing summary

Offboard testing confirmed that the design meets the pointcloud quality and timing criteria
outlined in Section 3.3.2. While the CPU load was reduced in two out of three results, the
difference was not large enough to be considered a success and formally move to stage 3 testing.
The design will need further refinement and expansion to handle the full local bundle adjust-
ment algorithm on the GPU to see considerable decrease in CPU usage and complete these

27

requirements.

5.3 Onboard Testing

The onboard testing was only able to be conducted using the base system but gives a basis for
comparison between the performance of the two computer systems such that some predictions
may be able to be drawn of the performance of the design if implemented on this system.

(a) OC trial during SLAM (b) SSM trial during SLAM (c) CC trial during SLAM

Figure 5.13: Comparison of offboard and onboard computers running base ORB-SLAM2 across
campus trials

The CPU consumption data shows that across the three trials the Xavier Jetson uses on
average 11 % less than the offboard computer. Initialisation time matched that of the offboard
base system trials, indicating that there was no difference in the algorithms ability to process
the image data and operate all components of the system.

5.3.1 Onboard testing summary

The preliminary onboard testing that was able to be conducted provides evidence that the Xavier
Jetson has a somewhat more capable CPU and as such should provide better performance then
the offboard system for all the components of the design which do not utilise the GPU. This is
in practice offset by the other systems that will be running in the autonomous stack when the
bus is in operation which is yet to be tested until the gateway criteria of Stage 2 testing is met.

28

Chapter 6

Discussion and Suggestions

6.1 Knock on effects of recording real timing data

The timing data acquired is representative of the real time between the start of the process
and the completion. This differs from the actual time spent processing as each CPU core is
constantly multitasking between processes in real time. Understanding this, every effort was
made to ensure the computer was in a uniform state for each test, closing down any remote
desktop connections and other non essential tasks during testing. Some of the implications were
unavoidable, however, and it’s predicted that a portion of the time reductions in the bundle
adjustment data will be as a result of the reduced CPU load from the ORB Extraction, and
hence less time spent processing the ORB extraction while the local bundle adjustment process
is in progress. The real time had to be measured in order to get constant data when tasks were
split between the CPU and GPU.

6.2 Testing on unclean systems

Both computer systems were considered to be unclean environments with which the project
was to be implemented on. This goes against available advice which is to install and test code
on a freshly installed operating system, to ensure the latest versions of software and remove
the possibility of duplicate or modified packages, or remaining remnants of uninstalled packages
disrupting the compilation of newly installed software. Unfortunately due to the operational
nature of the Xavier PC and the shared use and configuration of the testing workstation, a
clean environment was not achievable for either of these systems. Installation on an unclean
environment can cause an array of issues as various other packages and dependencies are out
of date or installed in unlikely and problematic locations. While on the graphics workstation is
not frequently used by other personnel, installation on the Jetson Xavier computer will need to
be carefully assessed to ensure that modification is not made which affects external code on the
computer used for the current operation of the bus. Due to the many interdependent packages
on the pc this can happen quite easily without immediately being aware. Such small changes
can never the less cause a great deal of unexpected downtime and debugging hours later on.

6.3 Separation of operational and development hardware

With the recent addition of a second shuttle bus and potential acquisition of new Nvidia hard-
ware, had this project been run at a later date where such hardware was available with a clean
environment, its expected that difficulties faced during the installation process would have been
significantly reduced by testing on a new machine in a clean system environment. Such a reality
would also mean there would be no need for stage two testing as easy and accessible testing and

29

debugging could be done directly on the intended target machine. With two shuttle buses the
testing on the bus would not have had to have been foregoed in favour of keeping the bus in
an operational state, as testing which would incur large downtime could be conducted on the
second bus.

6.4 Extension to full local bundle adjustment on GPU

The extension of the techniques used by Adaskit-Team to compute local bundle adjustment on
the GPU was partially produced but not able to be completed. Unrefined knowledge of the
C++ programming language was the main element that prevented execution of this extension
in a timely manner. The key hurdle lay in the robust kernel used in local bundle adjustment
which could be overlooked during global bundle adjustment in Adaskit-Team’s method [29], but
was required to produce an accurate pointcloud while undertaking local bundle adjustment. It’s
suggested that such a task be engaged by an individual with stronger programming background
and experience in C++.

30

Chapter 7

Conclusion

The operational uptime requirements of the bus and alternative developments ultimately hindered
this projects ability to proceed to the execution phase but the design passed some the construc-
ted milestones to determine its feasibility up until this point. With further development of the
code to extend the graphics integration to the whole of the local bundle adjustment process it is
expected we will see results which further reduce CPU demand of the system. This, in combina-
tion with the improved CPU results seen on the onboard system provide promise that a CUDA
integrated ORB-SLAM implementation is a feasible solution which may provide simultaneous
localisation and mapping results without overburdening the computation systems available on
the nUWAy shuttle bus.

31

Bibliography

[1] R. Mur-Artal and J. D. Tardos, “Orb-slam2: An open-source slam system for monocular,
stereo, and rgb-d cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262,
2017. doi: 10.1109/TRO.2017.2705103.

[2] V. der Automobilindustrie, “Lane keeping assist systems,” Safety and Standards - German
Association of the Automotive Industry, [Online]. Available: https://www.vda.de/en/
topics/safety-and-standards/lkas/lane-keeping-assist-systems.html.

[3] V. Demuynck, “How do hd maps extend the vision of autonomous vehicles?” TomTom,
2020. [Online]. Available: https://www.tomtom.com/blog/automated-driving/hd-
maps-vision-autonomous-driving/.

[4] O.-R. A. D. (committee, Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles, Apr. 2021. doi: https://doi.org/10.4271/J3016_
202104. [Online]. Available: https://doi.org/10.4271/J3016_202104.

[5] G. Sharabok, “Why tesla won’t use lidar,” Towards Data Science, 2020. [Online]. Avail-
able: https://towardsdatascience.com/why-tesla-wont-use-lidar-57c325ae2ed5.

[6] E. Chan, “Lidar vs. camera only – what is the best sensor suite combination for full
autonomous driving?” Mirae Asset Global Investments (Hong Kong) Limited., 2021. [On-
line]. Available: https://www.am.miraeasset.com.hk/insight/lidar-vs-camera-
only- what- is- the- best- sensor- suite- combination- for- full- autonomous-

driving/.

[7] V. O. M. Team, “What is visual slam technology and what is it used for?” Association
for Advancing Automation (A3), 2018. [Online]. Available: https://www.automate.org/
blogs/what-is-visual-slam-technology-and-what-is-it-used-for.

[8] F. Huang, H. Yang, X. Tan, S. Peng, J. Tao and S. Peng, “Fast reconstruction of 3d point
cloud model using visual slam on embedded uav development platform,” Remote Sensing,
vol. 12, no. 20, 2020, issn: 2072-4292. doi: 10.3390/rs12203308. [Online]. Available:
https://www.mdpi.com/2072-4292/12/20/3308.

[9] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in
Computer Vision – ECCV 2006, A. Leonardis, H. Bischof and A. Pinz, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 430–443, isbn: 978-3-540-33833-8.

[10] D. Tyagi, “Introduction to fast (features from accelerated segment test),” 2019. [Online].
Available: https://medium.com/data-breach/introduction-to-fast-features-
from-accelerated-segment-test-4ed33dde6d65.

[11] R. Mur-Artal, J. M. M. Montiel and J. D. Tardós, “Orb-slam: A versatile and accurate
monocular slam system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163,
2015. doi: 10.1109/TRO.2015.2463671.

[12] Y. Li, N. Snavely and D. P. Huttenlocher, “Location recognition using prioritized feature
matching,” in Computer Vision – ECCV 2010, K. Daniilidis, P. Maragos and N. Paragios,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 791–804, isbn: 978-3-642-
15552-9.

32

https://doi.org/10.1109/TRO.2017.2705103
https://www.vda.de/en/topics/safety-and-standards/lkas/lane-keeping-assist-systems.html
https://www.vda.de/en/topics/safety-and-standards/lkas/lane-keeping-assist-systems.html
https://www.tomtom.com/blog/automated-driving/hd-maps-vision-autonomous-driving/
https://www.tomtom.com/blog/automated-driving/hd-maps-vision-autonomous-driving/
https://doi.org/https://doi.org/10.4271/J3016_202104
https://doi.org/https://doi.org/10.4271/J3016_202104
https://doi.org/10.4271/J3016_202104
https://towardsdatascience.com/why-tesla-wont-use-lidar-57c325ae2ed5
https://www.am.miraeasset.com.hk/insight/lidar-vs-camera-only-what-is-the-best-sensor-suite-combination-for-full-autonomous-driving/
https://www.am.miraeasset.com.hk/insight/lidar-vs-camera-only-what-is-the-best-sensor-suite-combination-for-full-autonomous-driving/
https://www.am.miraeasset.com.hk/insight/lidar-vs-camera-only-what-is-the-best-sensor-suite-combination-for-full-autonomous-driving/
https://www.automate.org/blogs/what-is-visual-slam-technology-and-what-is-it-used-for
https://www.automate.org/blogs/what-is-visual-slam-technology-and-what-is-it-used-for
https://doi.org/10.3390/rs12203308
https://www.mdpi.com/2072-4292/12/20/3308
https://medium.com/data-breach/introduction-to-fast-features-from-accelerated-segment-test-4ed33dde6d65
https://medium.com/data-breach/introduction-to-fast-features-from-accelerated-segment-test-4ed33dde6d65
https://doi.org/10.1109/TRO.2015.2463671

[13] Y. Zhou, X. Zheng, R. Chen, X. Hanjiang and S. Guo, “Image-based localization aided
indoor pedestrian trajectory estimation using smartphones,” Sensors, vol. 18, p. 258, Jan.
2018. doi: 10.3390/s18010258.

[14] B. Asadi, “Bundle adjustment explained,” 2019. [Online]. Available: https : / / ros -

developer.com/2019/10/17/bundle-adjustment-explained/.

[15] N. Ben Amor, “Towards a dynamic deployment strategy of wheelchair command applic-
ations on heterogeneous architecture,” Journal of Information Assurance and Security,
vol. 11, pp. 117–125, Mar. 2016.

[16] K. Pulli, A. Baksheev, K. Kornyakov and V. Eruhimov, “Realtime computer vision with
opencv: Mobile computer-vision technology will soon become as ubiquitous as touch in-
terfaces.,” Queue, vol. 10, no. 4, pp. 40–56, Apr. 2012, issn: 1542-7730. doi: 10.1145/
2181796.2206309. [Online]. Available: https://doi.org/10.1145/2181796.2206309.

[17] S. Aldegheri, N. Bombieri, D. D. Bloisi and A. Farinelli, “Data flow orb-slam for real-time
performance on embedded gpu boards,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 5370–5375. doi: 10.1109/IROS40897.
2019.8967814.

[18] C. Wu, S. Agarwal, B. Curless and S. Seitz, “Multicore bundle adjustment,” vol. 42, Jun.
2011, pp. 3057–3064. doi: 10.1109/CVPR.2011.5995552.

[19] R. Hänsch, I. Drude and O. Hellwich, “Modern methods of bundle adjustment on the gpu,”
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. III-3, pp. 43–50, 2016. doi: 10.5194/isprs-annals-III-3-43-2016. [Online].
Available: http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/
III-3/43/2016/.

[20] V. Jilkov and J. Wu, “Efficient gpu-accelerated implementation of particle and particle
flow filters for target tracking,” Journal of Advances in Information Fusion, vol. 10, pp. 73–
88, Jun. 2015.

[21] L. Murray, “Gpu acceleration of the particle filter: The metropolis resampler,” Preprint
arXiv:1202.6163, Feb. 2012.

[22] H. Strasdat, J. Montiel and A. J. Davison, “Visual slam: Why filter?” Image and Vision
Computing, vol. 30, no. 2, pp. 65–77, 2012, issn: 0262-8856. doi: https://doi.org/10.
1016/j.imavis.2012.02.009. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0262885612000248.

[23] S. Vithalani, S. Soni and P. Rajpura, “Autonomous navigation using monocular orb
slam2,” in Recent Advances in Communication Infrastructure, A. Mehta, A. Rawat and P.
Chauhan, Eds., Singapore: Springer Singapore, 2020, pp. 59–68, isbn: 978-981-15-0974-2.

[24] OpenCV, “Fast algorithm for corner detection,” 2021. [Online]. Available: https://docs.
opencv.org/3.4/df/d0c/tutorial_py_fast.html.

[25] ——, “Opencv: About,” 2021. [Online]. Available: https://opencv.org/about/.

[26] K. Karimi, N. G. Dickson and F. Hamze, A performance comparison of cuda and opencl,
2011. arXiv: 1005.2581 [cs.PF].

[27] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik and R.
Siegwart, “The euroc micro aerial vehicle datasets,” The International Journal of Robotics
Research, 2016. doi: 10.1177/0278364915620033. eprint: http://ijr.sagepub.com/
content/early/2016/01/21/0278364915620033.full.pdf+html. [Online]. Available:
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract.

[28] T. Nguyen, “Orbslam2cuda,” Nanyang Technological University, 2017. [Online]. Available:
https://github.com/thien94/ORB_SLAM2_CUDA.

33

https://doi.org/10.3390/s18010258
https://ros-developer.com/2019/10/17/bundle-adjustment-explained/
https://ros-developer.com/2019/10/17/bundle-adjustment-explained/
https://doi.org/10.1145/2181796.2206309
https://doi.org/10.1145/2181796.2206309
https://doi.org/10.1145/2181796.2206309
https://doi.org/10.1109/IROS40897.2019.8967814
https://doi.org/10.1109/IROS40897.2019.8967814
https://doi.org/10.1109/CVPR.2011.5995552
https://doi.org/10.5194/isprs-annals-III-3-43-2016
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/43/2016/
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/43/2016/
https://doi.org/https://doi.org/10.1016/j.imavis.2012.02.009
https://doi.org/https://doi.org/10.1016/j.imavis.2012.02.009
https://www.sciencedirect.com/science/article/pii/S0262885612000248
https://www.sciencedirect.com/science/article/pii/S0262885612000248
https://docs.opencv.org/3.4/df/d0c/tutorial_py_fast.html
https://docs.opencv.org/3.4/df/d0c/tutorial_py_fast.html
https://opencv.org/about/
https://arxiv.org/abs/1005.2581
https://doi.org/10.1177/0278364915620033
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.full.pdf+html
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.full.pdf+html
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
https://github.com/thien94/ORB_SLAM2_CUDA

[29] Adaskit-Team, “Cuda-bundle-adjustment,” Fixstars Corporation, 2021. [Online]. Avail-
able: https://github.com/fixstars/cuda-bundle-adjustment.

34

https://github.com/fixstars/cuda-bundle-adjustment

	Introduction
	Background
	nUWAy Shuttle Bus

	Problem Statement
	Intended Contribution

	Literature Review
	Simultaneous Localisation and Mapping
	FAST Corners
	Keyframe
	Covisibility
	Bundle adjustment

	Graphics Acceleration
	Graphics Processing in SLAM

	Design Process
	Design Tools
	ORB-SLAM
	OpenCV
	CUDA
	ROS
	Nvidia Jetson AGX Xavier
	Graphics workstation
	Cameras

	Evaluation Criteria
	Computation consumption
	Pointcloud evaluation
	Time

	Method
	Stage 1: Pretesting
	Stage 2: Offboard trials
	Stage 3: Onboard trials
	Stage 4: Live trials

	Trial selection
	Oceans building trial (OC)
	Social science to mechanical building trial (SSM)
	Reid to childcare building trial (CC)

	Final Design
	System Architecture
	ORB extraction
	Bundle adjustment
	VideoToRosbag.py converter
	Image publisher

	Camera Calibration
	Package Installation
	Bandwidth limitations

	Results
	Stage 1: Pretesting
	EuRoC V1 trial
	OC trial
	SSM trial
	CC trial
	Pretesting summary

	Stage 2: Offboard Testing
	OC trial
	SSM trial
	CC trial
	Timing
	Offboard testing summary

	Onboard Testing
	Onboard testing summary

	Discussion and Suggestions
	Knock on effects of recording real timing data
	Testing on unclean systems
	Separation of operational and development hardware
	Extension to full local bundle adjustment on GPU

	Conclusion

